
Convolution Project

Brandon Rodriguez

Input Files

Input Files - File Type
● Images in “Portable Bitmap Format”

○ One of the most basic image types.
○ No compression.
○ Header has 3 parts:

■ File type, such as P6 (rgb) and P5 (greyscale).
■ Image width (in pixels)
■ Image height (in pixels)

○ Body is raw rgb pixel data.

Input Files - Image Content
● 38 Images total.
● Images taken myself, with my phone.

○ Various assorted images taken over the past years.

● Images are various content, split into 6 categories.
○ Meant to test effectiveness of code with wildly varying input.

● Tried to have approximately 5 to 8 images per category.

Input File Categories - Nature

Input File Categories - Nature Fuzzy

Input File Categories - Objects

Input File Categories - Hallways

Input File Categories - Blurry

Input File Categories - Other

Input Images - Format
● Rescaled to varying sizes

○ 13 x 10 pixels
○ 400 x 300 pixels
○ 2000 x 1500 pixels
○ 4000 x 3000 pixels (original file format)

● Two sets of every image, per size group
○ Original RGB (full color) format
○ Desaturated Greyscale (black-and-white) format

Input Images - Format
Reminder for image file format.

The most basic implementation of color image will have:

● 3 different “Channels”.
● Each channel represents a

“base” color (red/green/blue).

Input Images - Format
● Each pixel has a numerical value for each channel.
● Together, the channels create the final color

we physically see.

Code Setup

Code Setup
● C++ with CUDA for GPU computations.
● Only used standard C++ libraries.
● Images were read into an 1D array of structs.

○ Each struct represented an individual pixel.
○ Struct contained a float for each of:

■ Red pixels
■ Green Pixels
■ Blue Pixels

Code Setup
● Convolution masks were also represented with 1D struct

arrays.
● Mask channel values (red/green/blue) generally matched,

for a given pixel.
○ Aka, mask [red == green == blue], for each pixel.

Initial Experiments

01 - Pixel Manipulation Test
● Most basic possible manipulation.
● Set alternating pixels to black/white, regardless of original

image content.
● Result was a boring grey

color for larger images.

02 - Checkerboard
● Basic manipulation that takes rows/columns into account.
● Creates groups of pixels into squares and sets each group

to alternating black/white.

03 - Adjusting Individual Channels
● Test to manipulate each color channel (red/green/blue)

separately.

Convolution Implementation
Gaussian Blur

Importance of Mask
● Initially, I thought the mask was simply a “weight”.
● Assumed most convolution logic occurred after weights.
● Attempted to “guess” the initial mask values and

got...interesting results.

Gaussian Mask
● Mask Center should be largest value.
● Values gradually get smaller towards edges.
● All mask values should add up to a total of 1.

Gaussian Mask Size
● Size of image didn’t seem to affect anything.

○ Excluding computational cost.

● But size of mask (proportional to image) matters.
○ Larger mask means:

■ More blur.
■ Higher computational cost.

Mask Size: 10% Mask Size: 4%

Mask Size: 2% Mask Size: 1%

Effect of Channels in Gaussian

Edge Detection

Importance of Masks (Revisited)
● Convolution Mask is very important.
● Simply changing the mask changes what the convolution

can do.

Laplacian of Gaussian Mask
● Possible to mathematically include complex concepts into

the mask.
● The “Laplacian Operator” examines the second derivative

values of data.
○ Due to dealing with derivatives, can be sensitive to noise.

● “Laplacian of Gaussian” fixes this by combining Gaussian
Blur into the mask.

Mask Properties
● Smaller masks worked best:

○ Ideal seemed to be 7x7 pixels or 9x9 pixels.
○ 9x9 better for “man made” objects, or with clear object separation.
○ 7x7 better for “natural”/”plant-like” objects, or with very textured images.

● Image size seemed to directly affect how accurate line
detection was:
○ Small images had rough/approximate detection.
○ Large image had extremely accurate detection.

Edge Detection - Image Size
Image Size: 4000x3000 Image Size: 2000x1500 Image Size: 400x300

Due to lack of detail, smaller may be better for
most “computer vision” applications.

Edge Detection - Nature (Hi Res)

Edge Detection - Nature (Low Res)

Edge Detection - Nature Fuzzy

Edge Detection - Objects (Hi Res)

Edge Detection - Objects (Low Res)

Edge Detection - Hallways

Edge Detection - Other

Edge Detection - Channel Impact

Optimizations

Gaussian Blur Times

Gaussian Blur Times

Edge Detection Times

Optimizations
● Could potentially:

○ Optimize memory usage, such as with tiling.
○ Reduce number of total computations, such as with Fourier Transform.
○ For Gaussian, implement smarter use of masking.

■ We can approximate the end result using a series of smaller masks.

Fast Fourier Transform
● Effectively, Fourier Transform converts data from the

standard domain (time) to a new domain (frequency).
● Our original image and our mask each have a separate

representation in the frequency domain.
● We can combine these two as we convert back to our

original domain, which has the same as applying our
mask.

Fast Fourier Transform
● Due to the speed of Fast Fourier Transform, this is very

fast.
○ Ends up being faster than our original convolution algorithm, while

achieving the same effect.

● For more info:
○ https://www.youtube.com/watch?v=spUNpyF58BY
○ https://www.youtube.com/watch?v=gwaYwRwY6PU

https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=gwaYwRwY6PU

