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Input Files



Input Files - File Type
● Images in “Portable Bitmap Format”

○ One of the most basic image types.
○ No compression.
○ Header has 3 parts:

■ File type, such as P6 (rgb) and P5 (greyscale).
■ Image width (in pixels)
■ Image height (in pixels)

○ Body is raw rgb pixel data.



Input Files - Image Content
● 38 Images total.
● Images taken myself, with my phone.

○ Various assorted images taken over the past years.

● Images are various content, split into 6 categories.
○ Meant to test effectiveness of code with wildly varying input.

● Tried to have approximately 5 to 8 images per category.



Input File Categories - Nature



Input File Categories - Nature Fuzzy



Input File Categories - Objects



Input File Categories - Hallways



Input File Categories - Blurry



Input File Categories - Other



Input Images - Format
● Rescaled to varying sizes

○ 13 x 10 pixels
○ 400 x 300 pixels
○ 2000 x 1500 pixels
○ 4000 x 3000 pixels (original file format)

● Two sets of every image, per size group
○ Original RGB (full color) format
○ Desaturated Greyscale (black-and-white) format



Input Images - Format
Reminder for image file format.

The most basic implementation of color image will have:

● 3 different “Channels”.
● Each channel represents a

“base” color (red/green/blue).



Input Images - Format
● Each pixel has a numerical value for each channel.
● Together, the channels create the final color

we physically see.



Code Setup



Code Setup
● C++ with CUDA for GPU computations.
● Only used standard C++ libraries.
● Images were read into an 1D array of structs.

○ Each struct represented an individual pixel.
○ Struct contained a float for each of:

■ Red pixels
■ Green Pixels
■ Blue Pixels



Code Setup
● Convolution masks were also represented with 1D struct 

arrays.
● Mask channel values (red/green/blue) generally matched, 

for a given pixel.
○ Aka, mask [ red == green == blue ], for each pixel.



Initial Experiments



01 - Pixel Manipulation Test
● Most basic possible manipulation.
● Set alternating pixels to black/white, regardless of original 

image content.
● Result was a boring grey

color for larger images.



02 - Checkerboard
● Basic manipulation that takes rows/columns into account.
● Creates groups of pixels into squares and sets each group 

to alternating black/white.



03 - Adjusting Individual Channels
● Test to manipulate each color channel (red/green/blue) 

separately.



Convolution Implementation
Gaussian Blur



Importance of Mask
● Initially, I thought the mask was simply a “weight”.
● Assumed most convolution logic occurred after weights.
● Attempted to “guess” the initial mask values and 

got...interesting results.





Gaussian Mask
● Mask Center should be largest value.
● Values gradually get smaller towards edges.
● All mask values should add up to a total of 1.



Gaussian Mask Size
● Size of image didn’t seem to affect anything.

○ Excluding computational cost.

● But size of mask (proportional to image) matters.
○ Larger mask means:

■ More blur.
■ Higher computational cost. 



Mask Size: 10% Mask Size: 4%

Mask Size: 2% Mask Size: 1%



Effect of Channels in Gaussian



Edge Detection



Importance of Masks (Revisited)
● Convolution Mask is very important.
● Simply changing the mask changes what the convolution 

can do.



Laplacian of Gaussian Mask
● Possible to mathematically include complex concepts into 

the mask.
● The “Laplacian Operator” examines the second derivative 

values of data.
○ Due to dealing with derivatives, can be sensitive to noise.

● “Laplacian of Gaussian” fixes this by combining Gaussian 
Blur into the mask.



Mask Properties
● Smaller masks worked best:

○ Ideal seemed to be 7x7 pixels or 9x9 pixels.
○ 9x9 better for “man made” objects, or with clear object separation.
○ 7x7 better for “natural”/”plant-like” objects, or with very textured images.

● Image size seemed to directly affect how accurate line 
detection was:
○ Small images had rough/approximate detection.
○ Large image had extremely accurate detection.



Edge Detection - Image Size
Image Size: 4000x3000 Image Size: 2000x1500 Image Size: 400x300

Due to lack of detail, smaller may be better for
most “computer vision” applications.



Edge Detection - Nature (Hi Res)



Edge Detection - Nature (Low Res)



Edge Detection - Nature Fuzzy



Edge Detection - Objects (Hi Res)



Edge Detection - Objects (Low Res)



Edge Detection - Hallways



Edge Detection - Other



Edge Detection - Channel Impact



Optimizations



Gaussian Blur Times



Gaussian Blur Times



Edge Detection Times



Optimizations
● Could potentially:

○ Optimize memory usage, such as with tiling.
○ Reduce number of total computations, such as with Fourier Transform.
○ For Gaussian, implement smarter use of masking.

■ We can approximate the end result using a series of smaller masks.



Fast Fourier Transform
● Effectively, Fourier Transform converts data from the 

standard domain (time) to a new domain (frequency).
● Our original image and our mask each have a separate 

representation in the frequency domain.
● We can combine these two as we convert back to our 

original domain, which has the same as applying our 
mask.



Fast Fourier Transform
● Due to the speed of Fast Fourier Transform, this is very 

fast.
○ Ends up being faster than our original convolution algorithm, while 

achieving the same effect.

● For more info:
○ https://www.youtube.com/watch?v=spUNpyF58BY
○ https://www.youtube.com/watch?v=gwaYwRwY6PU

https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=gwaYwRwY6PU



