A
N

Convolution Project

Brandon Rodriguez

<

N

Input Files

Input Files - File Type

e |Images in “Portable Bitmap Format”

o One of the most basic image types.

o No compression.

o Header has 3 parts:
m File type, such as P6 (rgb) and P5 (greyscale).
m Image width (in pixels)
m Image height (in pixels)

o Body is raw rgb pixel data.

Input Files - Image Content

e 38 Images total.
e |mages taken myself, with my phone.
o Various assorted images taken over the past years.

e |Images are various content, split into 6 categories.
o Meant to test effectiveness of code with wildly varying input.

e Tried to have approximately 5 to 8 images per category.

Input Images - Format

e Rescaled to varying sizes

o 13 x 10 pixels

o 400 x 300 pixels

o 2000 x 1500 pixels

o 4000 x 3000 pixels (original file format)

e Two sets of every image, per size group

o Original RGB (full color) format
o Desaturated Greyscale (black-and-white) format

Reminder for image file format.
The most basic implementation of color image will have:

e 3 different “Channels”.
e FEach channel represents a
“base” color (red/green/blue).

e Each pixel has a numerical value for each channel.
e Together, the channels create the final color
we physically see.

<

N

Code Setup

Code Setup

e C++ with CUDA for GPU computations.
e Only used standard C++ libraries.

e |Images were read into an 1D array of structs.

o Each struct represented an individual pixel.
o Struct contained a float for each of:

m Red pixels

m Green Pixels

m Blue Pixels

Code Setup

e Convolution masks were also represented with 1D struct

arrays.
e Mask channel values (red/green/blue) generally matched,

for a given pixel.
o Aka, mask [red == green == blue], for each pixel.

<

N

Initial Experiments

01 - Pixel Manipulation Test

e Most basic possible manipulation.

e Set alternating pixels to black/white, regardless of original
image content.

e Result was a boring grey
color for larger images.

e Basic manipulation that takes rows/columns into account.
e Creates groups of pixels into squares and sets each group
to alternating black/white.

e Test to manipulate each color channel (red/green/blue)
separately. -

<
A

Convolution Implementation
Gaussian Blur

Importance of Mask

e [nitially, | thought the mask was simply a “weight”.
e Assumed most convolution logic occurred after weights.

e Attempted to “guess” the initial mask values and
got...interesting results.

N

Gaussian Mask

e Mask Center should be largest value.
e Values gradually get smaller towards edges.
e All mask values should add up to a total of 1.

4 | 7| 4

16 | 26 | 16

26| 41| 26

16 | 26 | 16

= | s | ~N|r]| -

O I O RN I N

4 | 7| 4

Gaussian Mask Size

e Size of image didn't seem to affect anything.
o Excluding computational cost.

e But size of mask (proportional to image) matters.

o Larger mask means:
m More blur.
m Higher computational cost.

Mask Size: 10% Mask Size: 4%

Mask Size: 2% Mask Size: 1%

<

N

Edge Detection

e Convolution Mask is very important.
e Simply changing the mask changes what the convolution
can do.

Laplacian of Gaussian Mask

e Possible to mathematically include complex concepts into

the mask.
e The “Laplacian Operator” examines the second derivative

values of data.
o Due to dealing with derivatives, can be sensitive to noise.

e “Laplacian of Gaussian” fixes this by combining Gaussian
Blur into the mask.

Mask Properties

e Smaller masks worked best:;

o ldeal seemed to be 7x7 pixels or 9x9 pixels.
o 9x9 better for “man made” objects, or with clear object separation.
o 7x7 better for “natural”/"plant-like” objects, or with very textured images.

e Image size seemed to directly affect how accurate line

detection was:

o Small images had rough/approximate detection.

o Large image had extremely accurate detection.

Image Size: 4000x3000 Image Size: 400x30

Due to lack of detail, smaller may be better for
most “computer vision” applications.

AT 1

ot T

o

P

[RSARANSL SN

7
7777
w7
i
i <

<

N

Optimizations

Gaussian Blur Times

Cost Based on Source Image Size

200

o 150

=}

Q.

£

(o]

O

2 400

=

=

3

(0]

w

3’ 50 -
0

13x10 400x300 2000x1500 4000x3000

Source Image Size (In Pixels)

Gaussian Blur Times

Cost Based on Mask Size (Proportional to Source Image Size)

800
600

400

Seconds

200 -

1/80

0
130 1/25 1/20 1/10

1/40

1/50

1/60

1/70

1/75

1/200 1/100 1/90

Edge Detection Times

Cost Based on Source Image Size

10

Avg Seconds to Compute

13x10 400x300 2000x1500 4000x3000

Source Image Size (In Pixels)

Optimizations

e Could potentially:
o Optimize memory usage, such as with tiling.
o Reduce number of total computations, such as with Fourier Transform.
o For Gaussian, implement smarter use of masking.
m We can approximate the end result using a series of smaller masks.

Fast Fourier Transform

e Effectively, Fourier Transform converts data from the
standard domain (time) to a new domain (frequency).

e Our original image and our mask each have a separate
representation in the frequency domain.

e We can combine these two as we convert back to our
original domain, which has the same as applying our

mask. n

Fast Fourier Transform

e Due to the speed of Fast Fourier Transform, this is very

fast.

o Ends up being faster than our original convolution algorithm, while
achieving the same effect.

e For more info:
o https://www.youtube.com/watch?v=spUNpyF58BY

o https://www.youtube.com/watch?v=gwaYwRwY6PU

https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=gwaYwRwY6PU

