CS5541 Lab Assignment: Cache Simulator

Zijiang Yang
February 16, 2020

1 Introduction

This is an individual project. The purpose of this assignment is to better un-
derstand the operation of cache memory. You will write a cache simulator that
will keep track of hits, misses, and evictions.

2 Downloading the assignment

Students can download the assignment files from the course Elearning site. The
code archive file will be called wmucachelab.tar.gz. This file contains the file
csim-ref and a directory called traces that contains the trace files that you
will use to test your cache simulator. The csim-ref executable will run on
the CS login servers and should run on any Ubuntu Linux system. Start by
copying wmucachelab.tar.gz to a protected Linux directory in which you plan
to do your work and extract the archive. This will create a directory called
wmucachelab that contains the files mentioned above.

3 Reference Trace Files

The traces subdirectory of the handout directory contains a collection of ref-
erence trace files that you can use to evaluate the correctness of the cache
simulator you write. The trace files are generated by a Linux program called
valgrind. For example, typing

linux> valgrind --log-fd=1 --tool=lackey -v --trace-mem=yes ls -1

on the command line runs the executable program 1s -1, captures a trace of
each of its memory accesses in the order they occur, and prints them on stdout.
Valgrind memory traces have the following form:

I 0400d47d4,8
M 0421c7£0,4
L 04f6b868,8
S 7££0005c8,8

Each line denotes one or two memory accesses. The format of each line is

[spaceloperation address,size

The operation field denotes the type of memory access: “I” denotes an in-
struction load, “L” a data load, “S” a data store, and “M” a data modify (i.e.,
a data load followed by a data store). There is never a space before each “I”.
There is always a space before each “M”, “L”, and “S”. The address field spec-
ifies a 64-b hexadecimal memory address. The size field specifies the number of
bytes accessed by the operation.

4 Writing a Cache Simulator

You will write a cache simulator that takes a valgrind memory trace as input,
simulates the hit/miss behavior of a cache memory on this trace, and outputs the
total number of hits, misses, and evictions. I have provided you with the binary
executable of a reference cache simulator, called csim-ref, that simulates the
behavior of a cache with arbitrary size and associativity on a valgrind trace file.
It uses the LRU (least-recently used) replacement policy when choosing which
cache line to evict. The reference simulator takes the following command-line
arguments:

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile>
e -h: Optional help flag that prints usage info
e —-v: Optional verbose flag that displays trace info
e -s <s>: Number of set index bits (S = 2 s is the number of sets)
e -E <E>: Associativity (number of lines per set)
e -b : Number of block bits (B = 2 b is the block size)
e -t <tracefile>: Name of the valgrind trace to replay

The command-line arguments are based on the notation (s, E, and b) from
Chapter 6 of your textbook. For example:

linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 misses:5 evictions:3

The same example in verbose mode:

linux> ./csim-ref -v -s 4 -E 1 -b 4 -t traces/yi.trace
10,1 miss

20,1 miss hit

22,1 hit

18,1 hit

110,1 miss eviction

210,1 miss eviction

12,1 miss eviction hit

hits:4 misses:5 evictions:3

2O ne =2

Your job is to write a cache simulator so that it takes the same command
line arguments and produces the identical output as the reference simulator.
Notice that this assignment starts from a ”blank page.” You’ll need to write it
from scratch.

5

6

This

Programming Rules

Include your name and email address in header comments in your code.

Your simulator must compile/interpret/run without warnings in order to
receive credit.

Your simulator must work correctly for arbitrary s, E, and b.

For this assignment, we are interested only in data cache performance, so
your simulator should ignore

1l instruction cache accesses (lines starting with “I”). Recall that valgrind
always puts “I” in the

irst column (with no preceding space), and “M”, “L”, and “S” in the
second column (with a preceding

pace). This may help you parse the trace.

You may NOT modify the trace files. I will be testing your simulator with
traces of the same form as

he reference traces I'm providing you, so your simulator MUST work with
those traces as they are.

To receive credit you must clearly indicate the total number of hits, misses,
and evictions at the end

f each simulation.

For this assignment, you should assume that memory accesses are aligned
properly, such that a single memory access never crosses block bound-
aries. By making this assumption, you can ignore the request sizes in the
valgrind traces.

Evaluation

section describes how your work will be evaluated. The full score for this

assignment is 90 points:

Program Correctness: 81 Points

Style: 9 Points

6.1 Evaluation for Correctness

I will run your cache simulator using different cache parameters and traces.
There will be eight test cases, each worth 3 points, except for the last case,
which is worth 6 points. The total number of points reported will be multiplied
by three to weight the correctness score for the assignment to 81 points:

You can use the reference simulator csim-ref to test your simulator. Your
simulator should return the same number of hits, misses, and evictions as the
reference simulator. During debugging, use the -v option for a detailed record
of each hit and miss.

Here are some examples of test runs using the reference simulator you will
be given. You should be able to run your simulator with the same parameters
as you see below (and any other set of parameters) and get the same results.

linux> ./csim-ref -s 1 -E 1 -b 1 -t traces/yi2.trace

linux> ./csim-ref -s 4 -E 2 -b 4 -t traces/yi.trace

linux> ./csim-ref -s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./csim-ref -s 2 -E 1 -b 3 -t traces/trans.trace
linux> ./csim-ref -s 2 -E 2 -b 3 -t traces/trans.trace
linux> ./csim-ref -s 2 -E 4 -b 3 -t traces/trans.trace
linux> ./csim-ref -s 5 -E 1 -b 5 -t traces/trans.trace
linux> ./csim-ref -s 5 -E 1 -b 5 -t traces/long.trace

For each test case, outputting the correct number of cache hits, misses and
evictions will give you full credit for that test case. Each of your reported
number of hits, misses and evictions is worth 1/3 of the credit for that test
case. That is, if a particular test case is worth 3 points, and your simulator
outputs the correct number of hits and misses, but reports the wrong number
of evictions, then you will earn 2 points.

7 Evaluation for Style

There are 9 points for coding style. These will be assigned manually by me.
Criteria for style points will include proper indentation, consistent coding style,
descriptive variable naming, etc. There are quite a few resources out there
for coding style standards. I'd recommend finding one you like and following
it. This is good practice for programming in general, and if you find one and
specify it in your README.TXT (with a link so I can go find it) I can evaluate
your code against those guidelines, which will help get you full style points for
the assignment.

8 Working on the Assignment

Here are some hints and suggestions for working on the assignment:

e You may use C, C++, Java, Python, or Ruby for this assignment. If
you don’t like any of those and would like to use something else please
clear your choice of language with me before you start. If you submit the
assignment in a language not listed here without getting approval your
submission will not be graded.

e Do NOT use any code from the internet or any other sources. Write your
own, original code. If you look for examples of HOW to do something
and then write your program once you understand it, then that’s fine. Be
sure, however, to include a reference to any resources you look at, online
or elsewhere, in your README.TXT file. For those kinds of references
indicate what code you looked at and what you wrote in your assignment
after you got an idea of how it worked. References without explanation
will not be considered valid and could lead to loss of points or, in the worst
case, amount to academic dishonesty, so be complete in your explanation
of how you used anything you looked at to increase your understanding.

e Do your initial debugging on the small traces, such as traces/dave.trace.

e The reference simulator takes an optional -v argument that enables ver-
bose output, displaying the hits, misses, and evictions that occur as a
result of each memory access. You are not required to implement this
feature in your simulator, but I strongly recommend that you do so. It
will help you debug by allowing you to directly compare the behavior of
your simulator with the reference simulator on the reference trace files.

e Each data load (L) or store (S) operation can cause at most one cache
miss. The data modify operation (M) is treated as a load followed by a
store to the same address. Thus, an M operation can result in two cache
hits, or a miss and a hit plus a possible eviction.

9 Handing in Your Work

Submit Cachelab using Elearning. There does not need to be any tracefile
or .PDF submitted for this assignment. Just submit your simulator code to
the Dropbox on Elearning. Please make sure you have a README.TXT that
contains your name and email adress, any coding style guidelines you used, any
reference material you used to help you write your simulator, and instructions
indicating how I should go about running your code. Indicate what (if any) IDE
you used, how I should import your code into it, what language you used, what
version, etc.

