
10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 1/64

 Numerical Computation Guide

Appendix D

What Every Computer Scientist Should
Know About Floating-Point Arithmetic
Note – This appendix is an edited reprint of the paper What Every Computer Scientist
Should Know About Floating-Point Arithmetic, by David Goldberg, published in the March,
1991 issue of Computing Surveys. Copyright 1991, Association for Computing Machinery,
Inc., reprinted by permission.

Abstract
Floating-point arithmetic is considered an esoteric subject by many people. This is rather
surprising because floating-point is ubiquitous in computer systems. Almost every language
has a floating-point datatype; computers from PCs to supercomputers have floating-point
accelerators; most compilers will be called upon to compile floating-point algorithms from
time to time; and virtually every operating system must respond to floating-point exceptions
such as overflow. This paper presents a tutorial on those aspects of floating-point that have
a direct impact on designers of computer systems. It begins with background on floating-
point representation and rounding error, continues with a discussion of the IEEE floating-
point standard, and concludes with numerous examples of how computer builders can
better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]:
General -- instruction set design; D.3.4 [Programming Languages]: Processors -- compilers,
optimization; G.1.0 [Numerical Analysis]: General -- computer arithmetic, error analysis,
numerical algorithms (Secondary)

D.2.1 [Software Engineering]: Requirements/Specifications -- languages; D.3.4
Programming Languages]: Formal Definitions and Theory -- semantics; D.4.1 Operating
Systems]: Process Management -- synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception, floating-point,
floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error,
rounding error, rounding mode, ulp, underflow.

Introduction
Builders of computer systems often need information about floating-point arithmetic. There
are, however, remarkably few sources of detailed information about it. One of the few books
on the subject, Floating-Point Computation by Pat Sterbenz, is long out of print. This paper
is a tutorial on those aspects of floating-point arithmetic (floating-point hereafter) that have a

https://docs.oracle.com/index.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncgTOC.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_x86.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_compliance.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncgIX.html

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 2/64

direct connection to systems building. It consists of three loosely connected parts. The first
section, Rounding Error, discusses the implications of using different rounding strategies for
the basic operations of addition, subtraction, multiplication and division. It also contains
background information on the two methods of measuring rounding error, ulps and relative
error. The second part discusses the IEEE floating-point standard, which is becoming
rapidly accepted by commercial hardware manufacturers. Included in the IEEE standard is
the rounding method for basic operations. The discussion of the standard draws on the
material in the section Rounding Error. The third part discusses the connections between
floating-point and the design of various aspects of computer systems. Topics include
instruction set design, optimizing compilers and exception handling.

I have tried to avoid making statements about floating-point without also giving reasons why
the statements are true, especially since the justifications involve nothing more complicated
than elementary calculus. Those explanations that are not central to the main argument
have been grouped into a section called "The Details," so that they can be skipped if
desired. In particular, the proofs of many of the theorems appear in this section. The end of
each proof is marked with the z symbol. When a proof is not included, the z appears
immediately following the statement of the theorem.

Rounding Error
Squeezing infinitely many real numbers into a finite number of bits requires an approximate
representation. Although there are infinitely many integers, in most programs the result of
integer computations can be stored in 32 bits. In contrast, given any fixed number of bits,
most calculations with real numbers will produce quantities that cannot be exactly
represented using that many bits. Therefore the result of a floating-point calculation must
often be rounded in order to fit back into its finite representation. This rounding error is the
characteristic feature of floating-point computation. The section Relative Error and Ulps
describes how it is measured.

Since most floating-point calculations have rounding error anyway, does it matter if the basic
arithmetic operations introduce a little bit more rounding error than necessary? That
question is a main theme throughout this section. The section Guard Digits discusses guard
digits, a means of reducing the error when subtracting two nearby numbers. Guard digits
were considered sufficiently important by IBM that in 1968 it added a guard digit to the
double precision format in the System/360 architecture (single precision already had a
guard digit), and retrofitted all existing machines in the field. Two examples are given to
illustrate the utility of guard digits.

The IEEE standard goes further than just requiring the use of a guard digit. It gives an
algorithm for addition, subtraction, multiplication, division and square root, and requires that
implementations produce the same result as that algorithm. Thus, when a program is
moved from one machine to another, the results of the basic operations will be the same in
every bit if both machines support the IEEE standard. This greatly simplifies the porting of
programs. Other uses of this precise specification are given in Exactly Rounded Operations.

Floating-point Formats

Several different representations of real numbers have been proposed, but by far the most
widely used is the floating-point representation.1 Floating-point representations have a base

 (which is always assumed to be even) and a precision p. If = 10 and p = 3, then the
number 0.1 is represented as 1.00 × 10-1. If = 2 and p = 24, then the decimal number 0.1
cannot be represented exactly, but is approximately 1.10011001100110011001101 × 2-4.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 3/64

In general, a floating-point number will be represented as ± d.dd... d × e, where d.dd... d is
called the significand2 and has p digits. More precisely ± d0 . d1 d2 ... dp-1 × e represents
the number

(1) .

The term floating-point number will be used to mean a real number that can be exactly
represented in the format under discussion. Two other parameters associated with floating-
point representations are the largest and smallest allowable exponents, emax and emin.

Since there are p possible significands, and emax - emin + 1 possible exponents, a floating-
point number can be encoded in

bits, where the final +1 is for the sign bit. The precise encoding is not important for now.

There are two reasons why a real number might not be exactly representable as a floating-
point number. The most common situation is illustrated by the decimal number 0.1. Although
it has a finite decimal representation, in binary it has an infinite repeating representation.
Thus when = 2, the number 0.1 lies strictly between two floating-point numbers and is
exactly representable by neither of them. A less common situation is that a real number is
out of range, that is, its absolute value is larger than × or smaller than 1.0 × .
Most of this paper discusses issues due to the first reason. However, numbers that are out
of range will be discussed in the sections Infinity and Denormalized Numbers.

Floating-point representations are not necessarily unique. For example, both 0.01 × 101 and
1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0 0 in equation (1) above), then

the representation is said to be normalized. The floating-point number 1.00 × 10-1 is
normalized, while 0.01 × 101 is not. When = 2, p = 3, emin = -1 and emax = 2 there are 16
normalized floating-point numbers, as shown in FIGURE D-1. The bold hash marks
correspond to numbers whose significand is 1.00. Requiring that a floating-point
representation be normalized makes the representation unique. Unfortunately, this
restriction makes it impossible to represent zero! A natural way to represent 0 is with 1.0 ×

 , since this preserves the fact that the numerical ordering of nonnegative real
numbers corresponds to the lexicographic ordering of their floating-point representations.3

When the exponent is stored in a k bit field, that means that only 2k - 1 values are available
for use as exponents, since one must be reserved to represent 0.

Note that the × in a floating-point number is part of the notation, and different from a
floating-point multiply operation. The meaning of the × symbol should be clear from the
context. For example, the expression (2.5 × 10-3) × (4.0 × 102) involves only a single
floating-point multiplication.

FIGURE D-1 Normalized numbers when = 2, p = 3, emin = -1, emax = 2

Relative Error and Ulps

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 4/64

Since rounding error is inherent in floating-point computation, it is important to have a way
to measure this error. Consider the floating-point format with = 10 and p = 3, which will be
used throughout this section. If the result of a floating-point computation is 3.12 × 10-2, and
the answer when computed to infinite precision is .0314, it is clear that this is in error by 2
units in the last place. Similarly, if the real number .0314159 is represented as 3.14 × 10-2,
then it is in error by .159 units in the last place. In general, if the floating-point number
d.d...d × e is used to represent z, then it is in error by d.d...d - (z/ e) p-1 units in the last
place.4, 5 The term ulps will be used as shorthand for "units in the last place." If the result of
a calculation is the floating-point number nearest to the correct result, it still might be in error
by as much as .5 ulp. Another way to measure the difference between a floating-point
number and the real number it is approximating is relative error, which is simply the
difference between the two numbers divided by the real number. For example the relative
error committed when approximating 3.14159 by 3.14 × 100 is .00159/3.14159 .0005.

To compute the relative error that corresponds to .5 ulp, observe that when a real number is
approximated by the closest possible floating-point number d.dd...dd × e, the error can be
as large as 0.00...00 ' × e, where ' is the digit /2, there are p units in the significand of
the floating-point number, and p units of 0 in the significand of the error. This error is ((/2)
-p) × e. Since numbers of the form d.dd...dd × e all have the same absolute error, but
have values that range between e and × e, the relative error ranges between ((/2) -p)
× e/ e and ((/2) -p) × e/ e+1. That is,

(2)

In particular, the relative error corresponding to .5 ulp can vary by a factor of . This factor
is called the wobble. Setting = (/2) -p to the largest of the bounds in (2) above, we can
say that when a real number is rounded to the closest floating-point number, the relative
error is always bounded by e, which is referred to as machine epsilon.

In the example above, the relative error was .00159/3.14159 .0005. In order to avoid
such small numbers, the relative error is normally written as a factor times , which in this
case is = (/2) -p = 5(10)-3 = .005. Thus the relative error would be expressed as
(.00159/3.14159)/.005) 0.1 .

To illustrate the difference between ulps and relative error, consider the real number x =
12.35. It is approximated by = 1.24 × 101. The error is 0.5 ulps, the relative error is 0.8 .
Next consider the computation 8 . The exact value is 8x = 98.8, while the computed value
is 8 = 9.92 × 101. The error is now 4.0 ulps, but the relative error is still 0.8 . The error
measured in ulps is 8 times larger, even though the relative error is the same. In general,
when the base is , a fixed relative error expressed in ulps can wobble by a factor of up to

. And conversely, as equation (2) above shows, a fixed error of .5 ulps results in a relative
error that can wobble by .

The most natural way to measure rounding error is in ulps. For example rounding to the
nearest floating-point number corresponds to an error of less than or equal to .5 ulp.
However, when analyzing the rounding error caused by various formulas, relative error is a
better measure. A good illustration of this is the analysis in the section Theorem 9. Since
can overestimate the effect of rounding to the nearest floating-point number by the wobble
factor of , error estimates of formulas will be tighter on machines with a small .

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 5/64

When only the order of magnitude of rounding error is of interest, ulps and may be used
interchangeably, since they differ by at most a factor of . For example, when a floating-
point number is in error by n ulps, that means that the number of contaminated digits is log
n. If the relative error in a computation is n , then

(3) contaminated digits log n.

Guard Digits

One method of computing the difference between two floating-point numbers is to compute
the difference exactly and then round it to the nearest floating-point number. This is very
expensive if the operands differ greatly in size. Assuming p = 3, 2.15 × 1012 - 1.25 × 10-5

would be calculated as

x = 2.15 × 1012

y = .0000000000000000125 × 1012

x - y = 2.1499999999999999875 × 1012

which rounds to 2.15 × 1012. Rather than using all these digits, floating-point hardware
normally operates on a fixed number of digits. Suppose that the number of digits kept is p,
and that when the smaller operand is shifted right, digits are simply discarded (as opposed
to rounding). Then 2.15 × 1012 - 1.25 × 10-5 becomes

x = 2.15 × 1012

y = 0.00 × 1012

x - y = 2.15 × 1012

The answer is exactly the same as if the difference had been computed exactly and then
rounded. Take another example: 10.1 - 9.93. This becomes

x = 1.01 × 101

y = 0.99 × 101

x - y = .02 × 101

The correct answer is .17, so the computed difference is off by 30 ulps and is wrong in
every digit! How bad can the error be?

Theorem 1

Using a floating-point format with parameters and p, and computing differences using p
digits, the relative error of the result can be as large as - 1.

Proof

A relative error of - 1 in the expression x - y occurs when x = 1.00...0 and y = ,
where = - 1. Here y has p digits (all equal to). The exact difference is x - y = -p.
However, when computing the answer using only p digits, the rightmost digit of y gets
shifted off, and so the computed difference is -p+1. Thus the error is -p - -p+1 = -p (-
1), and the relative error is -p(- 1)/ -p = - 1. z

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 6/64

When =2, the relative error can be as large as the result, and when =10, it can be 9
times larger. Or to put it another way, when =2, equation (3) shows that the number of
contaminated digits is log2(1/) = log2(2p) = p. That is, all of the p digits in the result are
wrong! Suppose that one extra digit is added to guard against this situation (a guard digit).
That is, the smaller number is truncated to p + 1 digits, and then the result of the subtraction
is rounded to p digits. With a guard digit, the previous example becomes

x = 1.010 × 101

y = 0.993 × 101

x - y = .017 × 101

and the answer is exact. With a single guard digit, the relative error of the result may be
greater than , as in 110 - 8.59.

x = 1.10 × 102

y = .085 × 102

x - y = 1.015 × 102

This rounds to 102, compared with the correct answer of 101.41, for a relative error of .006,
which is greater than = .005. In general, the relative error of the result can be only slightly
larger than . More precisely,

Theorem 2

If x and y are floating-point numbers in a format with parameters and p, and if subtraction
is done with p + 1 digits (i.e. one guard digit), then the relative rounding error in the result is
less than 2 .

This theorem will be proven in Rounding Error. Addition is included in the above theorem
since x and y can be positive or negative.

Cancellation

The last section can be summarized by saying that without a guard digit, the relative error
committed when subtracting two nearby quantities can be very large. In other words, the
evaluation of any expression containing a subtraction (or an addition of quantities with
opposite signs) could result in a relative error so large that all the digits are meaningless
(Theorem 1). When subtracting nearby quantities, the most significant digits in the operands
match and cancel each other. There are two kinds of cancellation: catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding errors. For
example in the quadratic formula, the expression b2 - 4ac occurs. The quantities b2 and 4ac
are subject to rounding errors since they are the results of floating-point multiplications.
Suppose that they are rounded to the nearest floating-point number, and so are accurate to
within .5 ulp. When they are subtracted, cancellation can cause many of the accurate digits
to disappear, leaving behind mainly digits contaminated by rounding error. Hence the
difference might have an error of many ulps. For example, consider b = 3.34, a = 1.22, and
c = 2.28. The exact value of b2 - 4ac is .0292. But b2 rounds to 11.2 and 4ac rounds to 11.1,
hence the final answer is .1 which is an error by 70 ulps, even though 11.2 - 11.1 is exactly
equal to .16. The subtraction did not introduce any error, but rather exposed the error
introduced in the earlier multiplications.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 7/64

Benign cancellation occurs when subtracting exactly known quantities. If x and y have no
rounding error, then by Theorem 2 if the subtraction is done with a guard digit, the difference
x-y has a very small relative error (less than 2).

A formula that exhibits catastrophic cancellation can sometimes be rearranged to eliminate
the problem. Again consider the quadratic formula

(4)

When , then does not involve a cancellation and

 .

But the other addition (subtraction) in one of the formulas will have a catastrophic
cancellation. To avoid this, multiply the numerator and denominator of r1 by

(and similarly for r2) to obtain

(5)

If and , then computing r1 using formula (4) will involve a cancellation. Therefore,
use formula (5) for computing r1 and (4) for r2. On the other hand, if b < 0, use (4) for
computing r1 and (5) for r2.

The expression x2 - y2 is another formula that exhibits catastrophic cancellation. It is more
accurate to evaluate it as (x - y)(x + y).7 Unlike the quadratic formula, this improved form still
has a subtraction, but it is a benign cancellation of quantities without rounding error, not a
catastrophic one. By Theorem 2, the relative error in x - y is at most 2 . The same is true of
x + y. Multiplying two quantities with a small relative error results in a product with a small
relative error (see the section Rounding Error).

In order to avoid confusion between exact and computed values, the following notation is
used. Whereas x - y denotes the exact difference of x and y, x y denotes the computed
difference (i.e., with rounding error). Similarly , , and denote computed addition,
multiplication, and division, respectively. All caps indicate the computed value of a function,
as in LN(x) or SQRT(x). Lowercase functions and traditional mathematical notation denote
their exact values as in ln(x) and .

Although (x y) (x y) is an excellent approximation to x2 - y2, the floating-point
numbers x and y might themselves be approximations to some true quantities and . For
example, and might be exactly known decimal numbers that cannot be expressed
exactly in binary. In this case, even though x y is a good approximation to x - y, it can
have a huge relative error compared to the true expression , and so the advantage of (x
+ y)(x - y) over x2 - y2 is not as dramatic. Since computing (x + y)(x - y) is about the same
amount of work as computing x2 - y2, it is clearly the preferred form in this case. In general,
however, replacing a catastrophic cancellation by a benign one is not worthwhile if the
expense is large, because the input is often (but not always) an approximation. But
eliminating a cancellation entirely (as in the quadratic formula) is worthwhile even if the data

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 8/64

are not exact. Throughout this paper, it will be assumed that the floating-point inputs to an
algorithm are exact and that the results are computed as accurately as possible.

The expression x2 - y2 is more accurate when rewritten as (x - y)(x + y) because a
catastrophic cancellation is replaced with a benign one. We next present more interesting
examples of formulas exhibiting catastrophic cancellation that can be rewritten to exhibit
only benign cancellation.

The area of a triangle can be expressed directly in terms of the lengths of its sides a, b, and
c as

(6)

(Suppose the triangle is very flat; that is, a b + c. Then s a, and the term (s - a) in
formula (6) subtracts two nearby numbers, one of which may have rounding error. For
example, if a = 9.0, b = c = 4.53, the correct value of s is 9.03 and A is 2.342.... Even
though the computed value of s (9.05) is in error by only 2 ulps, the computed value of A is
3.04, an error of 70 ulps.

There is a way to rewrite formula (6) so that it will return accurate results even for flat
triangles [Kahan 1986]. It is

(7)

If a, b, and c do not satisfy a b c, rename them before applying (7). It is straightforward
to check that the right-hand sides of (6) and (7) are algebraically identical. Using the values
of a, b, and c above gives a computed area of 2.35, which is 1 ulp in error and much more
accurate than the first formula.

Although formula (7) is much more accurate than (6) for this example, it would be nice to
know how well (7) performs in general.

Theorem 3

The rounding error incurred when using (7) to compute the area of a triangle is at most 11 ,
provided that subtraction is performed with a guard digit, e .005, and that square roots
are computed to within 1/2 ulp.

The condition that e < .005 is met in virtually every actual floating-point system. For
example when = 2, p 8 ensures that e < .005, and when = 10, p 3 is enough.

In statements like Theorem 3 that discuss the relative error of an expression, it is
understood that the expression is computed using floating-point arithmetic. In particular, the
relative error is actually of the expression

(8) SQRT((a (b c)) (c (a b)) (c (a b)) (a (b c))) 4

Because of the cumbersome nature of (8), in the statement of theorems we will usually say
the computed value of E rather than writing out E with circle notation.

Error bounds are usually too pessimistic. In the numerical example given above, the
computed value of (7) is 2.35, compared with a true value of 2.34216 for a relative error of
0.7 , which is much less than 11 . The main reason for computing error bounds is not to

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 9/64

get precise bounds but rather to verify that the formula does not contain numerical
problems.

A final example of an expression that can be rewritten to use benign cancellation is (1 + x)n,
where . This expression arises in financial calculations. Consider depositing $100
every day into a bank account that earns an annual interest rate of 6%, compounded daily.
If n = 365 and i = .06, the amount of money accumulated at the end of one year is

100

dollars. If this is computed using = 2 and p = 24, the result is $37615.45 compared to the
exact answer of $37614.05, a discrepancy of $1.40. The reason for the problem is easy to
see. The expression 1 + i/n involves adding 1 to .0001643836, so the low order bits of i/n
are lost. This rounding error is amplified when 1 + i/n is raised to the nth power.

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where now the
problem is to compute ln(1 + x) for small x. One approach is to use the approximation ln(1 +
x) x, in which case the payment becomes $37617.26, which is off by $3.21 and even less
accurate than the obvious formula. But there is a way to compute ln(1 + x) very accurately,
as Theorem 4 shows [Hewlett-Packard 1982]. This formula yields $37614.07, accurate to
within two cents!

Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The problem it solves is
that when x is small, LN(1 x) is not close to ln(1 + x) because 1 x has lost the
information in the low order bits of x. That is, the computed value of ln(1 + x) is not close to
its actual value when .

Theorem 4

If ln(1 + x) is computed using the formula

the relative error is at most 5 when 0 x < 3/4, provided subtraction is performed with a
guard digit, e < 0.1, and ln is computed to within 1/2 ulp.

This formula will work for any value of x but is only interesting for , which is where
catastrophic cancellation occurs in the naive formula ln(1 + x). Although the formula may
seem mysterious, there is a simple explanation for why it works. Write ln(1 + x) as

 .

The left hand factor can be computed exactly, but the right hand factor µ(x) = ln(1 + x)/x will
suffer a large rounding error when adding 1 to x. However, µ is almost constant, since ln(1 +
x) x. So changing x slightly will not introduce much error. In other words, if ,
computing will be a good approximation to xµ(x) = ln(1 + x). Is there a value for for
which and can be computed accurately? There is; namely = (1 x) 1, because
then 1 + is exactly equal to 1 x.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 10/64

The results of this section can be summarized by saying that a guard digit guarantees
accuracy when nearby precisely known quantities are subtracted (benign cancellation).
Sometimes a formula that gives inaccurate results can be rewritten to have much higher
numerical accuracy by using benign cancellation; however, the procedure only works if
subtraction is performed using a guard digit. The price of a guard digit is not high, because it
merely requires making the adder one bit wider. For a 54 bit double precision adder, the
additional cost is less than 2%. For this price, you gain the ability to run many algorithms
such as formula (6) for computing the area of a triangle and the expression ln(1 + x).
Although most modern computers have a guard digit, there are a few (such as Cray
systems) that do not.

Exactly Rounded Operations

When floating-point operations are done with a guard digit, they are not as accurate as if
they were computed exactly then rounded to the nearest floating-point number. Operations
performed in this manner will be called exactly rounded.8 The example immediately
preceding Theorem 2 shows that a single guard digit will not always give exactly rounded
results. The previous section gave several examples of algorithms that require a guard digit
in order to work properly. This section gives examples of algorithms that require exact
rounding.

So far, the definition of rounding has not been given. Rounding is straightforward, with the
exception of how to round halfway cases; for example, should 12.5 round to 12 or 13? One
school of thought divides the 10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7,
8, 9} round up; thus 12.5 would round to 13. This is how rounding works on Digital
Equipment Corporation's VAX computers. Another school of thought says that since
numbers ending in 5 are halfway between two possible roundings, they should round down
half the time and round up the other half. One way of obtaining this 50% behavior to require
that the rounded result have its least significant digit be even. Thus 12.5 rounds to 12 rather
than 13 because 2 is even. Which of these methods is best, round up or round to even?
Reiser and Knuth [1975] offer the following reason for preferring round to even.

Theorem 5

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0 y) y, ..., xn = (xn-1
 y) y. If and are exactly rounded using round to even, then either xn = x for all n or xn
= x1 for all n 1. z

To clarify this result, consider = 10, p = 3 and let x = 1.00, y = -.555. When rounding up,
the sequence becomes

x0 y = 1.56, x1 = 1.56 .555 = 1.01, x1 y = 1.01 .555 = 1.57,

and each successive value of xn increases by .01, until xn = 9.45 (n 845)9. Under round
to even, xn is always 1.00. This example suggests that when using the round up rule,
computations can gradually drift upward, whereas when using round to even the theorem
says this cannot happen. Throughout the rest of this paper, round to even will be used.

One application of exact rounding occurs in multiple precision arithmetic. There are two
basic approaches to higher precision. One approach represents floating-point numbers
using a very large significand, which is stored in an array of words, and codes the routines
for manipulating these numbers in assembly language. The second approach represents
higher precision floating-point numbers as an array of ordinary floating-point numbers,

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 11/64

where adding the elements of the array in infinite precision recovers the high precision
floating-point number. It is this second approach that will be discussed here. The advantage
of using an array of floating-point numbers is that it can be coded portably in a high level
language, but it requires exactly rounded arithmetic.

The key to multiplication in this system is representing a product xy as a sum, where each
summand has the same precision as x and y. This can be done by splitting x and y. Writing
x = xh + xl and y = yh + yl, the exact product is

xy = xh yh + xh yl + xl yh + xl yl.

If x and y have p bit significands, the summands will also have p bit significands provided
that xl, xh, yh, yl can be represented using [p/2] bits. When p is even, it is easy to find a
splitting. The number x0.x1 ... xp - 1 can be written as the sum of x0.x1 ... xp/2 - 1 and 0.0 ...
0xp/2 ... xp - 1. When p is odd, this simple splitting method will not work. An extra bit can,
however, be gained by using negative numbers. For example, if = 2, p = 5, and x =
.10111, x can be split as xh = .11 and xl = -.00001. There is more than one way to split a
number. A splitting method that is easy to compute is due to Dekker [1971], but it requires
more than a single guard digit.

Theorem 6

Let p be the floating-point precision, with the restriction that p is even when > 2, and
assume that floating-point operations are exactly rounded. Then if k = [p/2] is half the
precision (rounded up) and m = k + 1, x can be split as x = xh + xl, where

xh = (m x) (m x x), xl = x xh,

and each xi is representable using [p/2] bits of precision.

To see how this theorem works in an example, let = 10, p = 4, b = 3.476, a = 3.463, and c
= 3.479. Then b2 - ac rounded to the nearest floating-point number is .03480, while b b =
12.08, a c = 12.05, and so the computed value of b2 - ac is .03. This is an error of 480
ulps. Using Theorem 6 to write b = 3.5 - .024, a = 3.5 - .037, and c = 3.5 - .021, b2 becomes
3.52 - 2 × 3.5 × .024 + .0242. Each summand is exact, so b2 = 12.25 - .168 + .000576,
where the sum is left unevaluated at this point. Similarly, ac = 3.52 - (3.5 × .037 + 3.5 ×
.021) + .037 × .021 = 12.25 - .2030 +.000777. Finally, subtracting these two series term by
term gives an estimate for b2 - ac of 0 .0350 .000201 = .03480, which is identical to
the exactly rounded result. To show that Theorem 6 really requires exact rounding, consider
p = 3, = 2, and x = 7. Then m = 5, mx = 35, and m x = 32. If subtraction is performed
with a single guard digit, then (m x) x = 28. Therefore, xh = 4 and xl = 3, hence xl is not
representable with [p/2] = 1 bit.

As a final example of exact rounding, consider dividing m by 10. The result is a floating-
point number that will in general not be equal to m/10. When = 2, multiplying m/10 by 10
will restore m, provided exact rounding is being used. Actually, a more general fact (due to
Kahan) is true. The proof is ingenious, but readers not interested in such details can skip
ahead to section The IEEE Standard.

Theorem 7

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 12/64

When = 2, if m and n are integers with |m| < 2p - 1 and n has the special form n = 2i + 2j,
then (m n) n = m, provided floating-point operations are exactly rounded.

Proof

Scaling by a power of two is harmless, since it changes only the exponent, not the
significand. If q = m/n, then scale n so that 2p - 1 n < 2p and scale m so that 1/2 < q < 1.
Thus, 2p - 2 < m < 2p. Since m has p significant bits, it has at most one bit to the right of the
binary point. Changing the sign of m is harmless, so assume that q > 0.
If = m n, to prove the theorem requires showing that

(9)

That is because m has at most 1 bit right of the binary point, so n will round to m. To deal
with the halfway case when |n - m| = 1/4, note that since the initial unscaled m had |m| <
2p - 1, its low-order bit was 0, so the low-order bit of the scaled m is also 0. Thus, halfway
cases will round to m.
Suppose that q = .q1q2 ..., and let = .q1q2 ... qp1. To estimate |n - m|, first compute

| - q| = |N/2p + 1 - m/n|,

where N is an odd integer. Since n = 2i + 2j and 2p - 1 n < 2p, it must be that n = 2p - 1 +
2k for some k p - 2, and thus

 .

The numerator is an integer, and since N is odd, it is in fact an odd integer. Thus,

| - q| 1/(n2p + 1 - k).

Assume q < (the case q > is similar).10 Then n < m, and

|m-n |= m-n = n(q-) = n(q-(-2-p-1))

=(2p-1+2k)2-p-1-2-p-1+k =

This establishes (9) and proves the theorem.11 z

The theorem holds true for any base , as long as 2i + 2j is replaced by i + j. As gets
larger, however, denominators of the form i + j are farther and farther apart.

We are now in a position to answer the question, Does it matter if the basic arithmetic
operations introduce a little more rounding error than necessary? The answer is that it does
matter, because accurate basic operations enable us to prove that formulas are "correct" in
the sense they have a small relative error. The section Cancellation discussed several
algorithms that require guard digits to produce correct results in this sense. If the input to
those formulas are numbers representing imprecise measurements, however, the bounds of
Theorems 3 and 4 become less interesting. The reason is that the benign cancellation x - y
can become catastrophic if x and y are only approximations to some measured quantity. But

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 13/64

accurate operations are useful even in the face of inexact data, because they enable us to
establish exact relationships like those discussed in Theorems 6 and 7. These are useful
even if every floating-point variable is only an approximation to some actual value.

The IEEE Standard
There are two different IEEE standards for floating-point computation. IEEE 754 is a binary
standard that requires = 2, p = 24 for single precision and p = 53 for double precision
[IEEE 1987]. It also specifies the precise layout of bits in a single and double precision.
IEEE 854 allows either = 2 or = 10 and unlike 754, does not specify how floating-point
numbers are encoded into bits [Cody et al. 1984]. It does not require a particular value for p,
but instead it specifies constraints on the allowable values of p for single and double
precision. The term IEEE Standard will be used when discussing properties common to both
standards.

This section provides a tour of the IEEE standard. Each subsection discusses one aspect of
the standard and why it was included. It is not the purpose of this paper to argue that the
IEEE standard is the best possible floating-point standard but rather to accept the standard
as given and provide an introduction to its use. For full details consult the standards
themselves [IEEE 1987; Cody et al. 1984].

Formats and Operations

Base

It is clear why IEEE 854 allows = 10. Base ten is how humans exchange and think about
numbers. Using = 10 is especially appropriate for calculators, where the result of each
operation is displayed by the calculator in decimal.

There are several reasons why IEEE 854 requires that if the base is not 10, it must be 2.
The section Relative Error and Ulps mentioned one reason: the results of error analyses are
much tighter when is 2 because a rounding error of .5 ulp wobbles by a factor of when
computed as a relative error, and error analyses are almost always simpler when based on
relative error. A related reason has to do with the effective precision for large bases.
Consider = 16, p = 1 compared to = 2, p = 4. Both systems have 4 bits of significand.
Consider the computation of 15/8. When = 2, 15 is represented as 1.111 × 23, and 15/8
as 1.111 × 20. So 15/8 is exact. However, when = 16, 15 is represented as F × 160,
where F is the hexadecimal digit for 15. But 15/8 is represented as 1 × 160, which has only
one bit correct. In general, base 16 can lose up to 3 bits, so that a precision of p
hexadecimal digits can have an effective precision as low as 4p - 3 rather than 4p binary
bits. Since large values of have these problems, why did IBM choose = 16 for its
system/370? Only IBM knows for sure, but there are two possible reasons. The first is
increased exponent range. Single precision on the system/370 has = 16, p = 6. Hence the
significand requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the
exponent and one for the sign bit. Thus the magnitude of representable numbers ranges
from about to about = . To get a similar exponent range when = 2 would
require 9 bits of exponent, leaving only 22 bits for the significand. However, it was just
pointed out that when = 16, the effective precision can be as low as 4p - 3 = 21 bits. Even
worse, when = 2 it is possible to gain an extra bit of precision (as explained later in this
section), so the = 2 machine has 23 bits of precision to compare with a range of 21 - 24
bits for the = 16 machine.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 14/64

Another possible explanation for choosing = 16 has to do with shifting. When adding two
floating-point numbers, if their exponents are different, one of the significands will have to
be shifted to make the radix points line up, slowing down the operation. In the = 16, p = 1
system, all the numbers between 1 and 15 have the same exponent, and so no shifting is

required when adding any of the () = 105 possible pairs of distinct numbers from this set.
However, in the = 2, p = 4 system, these numbers have exponents ranging from 0 to 3,
and shifting is required for 70 of the 105 pairs.

In most modern hardware, the performance gained by avoiding a shift for a subset of
operands is negligible, and so the small wobble of = 2 makes it the preferable base.
Another advantage of using = 2 is that there is a way to gain an extra bit of significance.12

Since floating-point numbers are always normalized, the most significant bit of the
significand is always 1, and there is no reason to waste a bit of storage representing it.
Formats that use this trick are said to have a hidden bit. It was already pointed out in
Floating-point Formats that this requires a special convention for 0. The method given there
was that an exponent of emin - 1 and a significand of all zeros represents not , but
rather 0.

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the significand. However, it uses a hidden bit, so the significand is
24 bits (p = 24), even though it is encoded using only 23 bits.

Precision

The IEEE standard defines four different precisions: single, double, single-extended, and
double-extended. In IEEE 754, single and double precision correspond roughly to what
most floating-point hardware provides. Single precision occupies a single 32 bit word,
double precision two consecutive 32 bit words. Extended precision is a format that offers at
least a little extra precision and exponent range (TABLE D-1).

TABLE D-1 IEEE 754 Format Parameters

Parameter
Format

Single Single-Extended Double Double-Extended

p 24 32 53 64

emax +127 1023 +1023 > 16383

emin -126 -1022 -1022 -16382

Exponent width in bits 8 11 11 15

Format width in bits 32 43 64 79

The IEEE standard only specifies a lower bound on how many extra bits extended precision
provides. The minimum allowable double-extended format is sometimes referred to as 80-
bit format, even though the table shows it using 79 bits. The reason is that hardware
implementations of extended precision normally do not use a hidden bit, and so would use
80 rather than 79 bits.13

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 15/64

The standard puts the most emphasis on extended precision, making no recommendation
concerning double precision, but strongly recommending that Implementations should
support the extended format corresponding to the widest basic format supported, ...

One motivation for extended precision comes from calculators, which will often display 10
digits, but use 13 digits internally. By displaying only 10 of the 13 digits, the calculator
appears to the user as a "black box" that computes exponentials, cosines, etc. to 10 digits
of accuracy. For the calculator to compute functions like exp, log and cos to within 10 digits
with reasonable efficiency, it needs a few extra digits to work with. It is not hard to find a
simple rational expression that approximates log with an error of 500 units in the last place.
Thus computing with 13 digits gives an answer correct to 10 digits. By keeping these extra 3
digits hidden, the calculator presents a simple model to the operator.

Extended precision in the IEEE standard serves a similar function. It enables libraries to
efficiently compute quantities to within about .5 ulp in single (or double) precision, giving the
user of those libraries a simple model, namely that each primitive operation, be it a simple
multiply or an invocation of log, returns a value accurate to within about .5 ulp. However,
when using extended precision, it is important to make sure that its use is transparent to the
user. For example, on a calculator, if the internal representation of a displayed value is not
rounded to the same precision as the display, then the result of further operations will
depend on the hidden digits and appear unpredictable to the user.

To illustrate extended precision further, consider the problem of converting between IEEE
754 single precision and decimal. Ideally, single precision numbers will be printed with
enough digits so that when the decimal number is read back in, the single precision number
can be recovered. It turns out that 9 decimal digits are enough to recover a single precision
binary number (see the section Binary to Decimal Conversion). When converting a decimal
number back to its unique binary representation, a rounding error as small as 1 ulp is fatal,
because it will give the wrong answer. Here is a situation where extended precision is vital
for an efficient algorithm. When single-extended is available, a very straightforward method
exists for converting a decimal number to a single precision binary one. First read in the 9
decimal digits as an integer N, ignoring the decimal point. From TABLE D-1, p 32, and
since 109 < 232 4.3 × 109, N can be represented exactly in single-extended. Next find the
appropriate power 10P necessary to scale N. This will be a combination of the exponent of
the decimal number, together with the position of the (up until now) ignored decimal point.
Compute 10|P|. If |P| 13, then this is also represented exactly, because 1013 = 213513,
and 513 < 232. Finally multiply (or divide if p < 0) N and 10|P|. If this last operation is done
exactly, then the closest binary number is recovered. The section Binary to Decimal
Conversion shows how to do the last multiply (or divide) exactly. Thus for |P| 13, the use
of the single-extended format enables 9-digit decimal numbers to be converted to the
closest binary number (i.e. exactly rounded). If |P| > 13, then single-extended is not enough
for the above algorithm to always compute the exactly rounded binary equivalent, but
Coonen [1984] shows that it is enough to guarantee that the conversion of binary to decimal
and back will recover the original binary number.

If double precision is supported, then the algorithm above would be run in double precision
rather than single-extended, but to convert double precision to a 17-digit decimal number
and back would require the double-extended format.

Exponent

Since the exponent can be positive or negative, some method must be chosen to represent
its sign. Two common methods of representing signed numbers are sign/magnitude and

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 16/64

two's complement. Sign/magnitude is the system used for the sign of the significand in the
IEEE formats: one bit is used to hold the sign, the rest of the bits represent the magnitude of
the number. The two's complement representation is often used in integer arithmetic. In this
scheme, a number in the range [-2p-1, 2p-1 - 1] is represented by the smallest nonnegative
number that is congruent to it modulo 2p.

The IEEE binary standard does not use either of these methods to represent the exponent,
but instead uses a biased representation. In the case of single precision, where the
exponent is stored in 8 bits, the bias is 127 (for double precision it is 1023). What this
means is that if is the value of the exponent bits interpreted as an unsigned integer, then
the exponent of the floating-point number is - 127. This is often called the unbiased
exponent to distinguish from the biased exponent .

Referring to TABLE D-1, single precision has emax = 127 and emin = -126. The reason for

having |emin| < emax is so that the reciprocal of the smallest number will not
overflow. Although it is true that the reciprocal of the largest number will underflow,
underflow is usually less serious than overflow. The section Base explained that emin - 1 is
used for representing 0, and Special Quantities will introduce a use for emax + 1. In IEEE
single precision, this means that the biased exponents range between emin - 1 = -127 and
emax + 1 = 128, whereas the unbiased exponents range between 0 and 255, which are
exactly the nonnegative numbers that can be represented using 8 bits.

Operations

The IEEE standard requires that the result of addition, subtraction, multiplication and
division be exactly rounded. That is, the result must be computed exactly and then rounded
to the nearest floating-point number (using round to even). The section Guard Digits pointed
out that computing the exact difference or sum of two floating-point numbers can be very
expensive when their exponents are substantially different. That section introduced guard
digits, which provide a practical way of computing differences while guaranteeing that the
relative error is small. However, computing with a single guard digit will not always give the
same answer as computing the exact result and then rounding. By introducing a second
guard digit and a third sticky bit, differences can be computed at only a little more cost than
with a single guard digit, but the result is the same as if the difference were computed
exactly and then rounded [Goldberg 1990]. Thus the standard can be implemented
efficiently.

One reason for completely specifying the results of arithmetic operations is to improve the
portability of software. When a program is moved between two machines and both support
IEEE arithmetic, then if any intermediate result differs, it must be because of software bugs,
not from differences in arithmetic. Another advantage of precise specification is that it
makes it easier to reason about floating-point. Proofs about floating-point are hard enough,
without having to deal with multiple cases arising from multiple kinds of arithmetic. Just as
integer programs can be proven to be correct, so can floating-point programs, although
what is proven in that case is that the rounding error of the result satisfies certain bounds.
Theorem 4 is an example of such a proof. These proofs are made much easier when the
operations being reasoned about are precisely specified. Once an algorithm is proven to be
correct for IEEE arithmetic, it will work correctly on any machine supporting the IEEE
standard.

Brown [1981] has proposed axioms for floating-point that include most of the existing
floating-point hardware. However, proofs in this system cannot verify the algorithms of

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 17/64

sections Cancellation and Exactly Rounded Operations, which require features not present
on all hardware. Furthermore, Brown's axioms are more complex than simply defining
operations to be performed exactly and then rounded. Thus proving theorems from Brown's
axioms is usually more difficult than proving them assuming operations are exactly rounded.

There is not complete agreement on what operations a floating-point standard should cover.
In addition to the basic operations +, -, × and /, the IEEE standard also specifies that square
root, remainder, and conversion between integer and floating-point be correctly rounded. It
also requires that conversion between internal formats and decimal be correctly rounded
(except for very large numbers). Kulisch and Miranker [1986] have proposed adding inner
product to the list of operations that are precisely specified. They note that when inner
products are computed in IEEE arithmetic, the final answer can be quite wrong. For
example sums are a special case of inner products, and the sum ((2 × 10-30 + 1030) - 1030)
- 10-30 is exactly equal to 10-30, but on a machine with IEEE arithmetic the computed result
will be -10-30. It is possible to compute inner products to within 1 ulp with less hardware
than it takes to implement a fast multiplier [Kirchner and Kulish 1987].14 15

All the operations mentioned in the standard are required to be exactly rounded except
conversion between decimal and binary. The reason is that efficient algorithms for exactly
rounding all the operations are known, except conversion. For conversion, the best known
efficient algorithms produce results that are slightly worse than exactly rounded ones
[Coonen 1984].

The IEEE standard does not require transcendental functions to be exactly rounded
because of the table maker's dilemma. To illustrate, suppose you are making a table of the
exponential function to 4 places. Then exp(1.626) = 5.0835. Should this be rounded to
5.083 or 5.084? If exp(1.626) is computed more carefully, it becomes 5.08350. And then
5.083500. And then 5.0835000. Since exp is transcendental, this could go on arbitrarily long
before distinguishing whether exp(1.626) is 5.083500...0ddd or 5.0834999...9ddd. Thus it is
not practical to specify that the precision of transcendental functions be the same as if they
were computed to infinite precision and then rounded. Another approach would be to
specify transcendental functions algorithmically. But there does not appear to be a single
algorithm that works well across all hardware architectures. Rational approximation,
CORDIC,16 and large tables are three different techniques that are used for computing
transcendentals on contemporary machines. Each is appropriate for a different class of
hardware, and at present no single algorithm works acceptably over the wide range of
current hardware.

Special Quantities

On some floating-point hardware every bit pattern represents a valid floating-point number.
The IBM System/370 is an example of this. On the other hand, the VAXTM reserves some bit
patterns to represent special numbers called reserved operands. This idea goes back to the
CDC 6600, which had bit patterns for the special quantities INDEFINITE and INFINITY.

The IEEE standard continues in this tradition and has NaNs (Not a Number) and infinities.
Without any special quantities, there is no good way to handle exceptional situations like
taking the square root of a negative number, other than aborting computation. Under IBM
System/370 FORTRAN, the default action in response to computing the square root of a
negative number like -4 results in the printing of an error message. Since every bit pattern
represents a valid number, the return value of square root must be some floating-point
number. In the case of System/370 FORTRAN, is returned. In IEEE arithmetic, a
NaN is returned in this situation.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 18/64

The IEEE standard specifies the following special values (see TABLE D-2): ± 0,
denormalized numbers, ± and NaNs (there is more than one NaN, as explained in the
next section). These special values are all encoded with exponents of either emax + 1 or
emin - 1 (it was already pointed out that 0 has an exponent of emin - 1).

TABLE D-2 IEEE 754 Special Values

Exponent Fraction Represents

e = emin - 1 f = 0 ±0

e = emin - 1 f 0

emin e emax -- 1.f × 2e

e = emax + 1 f = 0 ±

e = emax + 1 f 0 NaN

NaNs

Traditionally, the computation of 0/0 or has been treated as an unrecoverable error
which causes a computation to halt. However, there are examples where it makes sense for
a computation to continue in such a situation. Consider a subroutine that finds the zeros of a
function f, say zero(f). Traditionally, zero finders require the user to input an interval [a, b]
on which the function is defined and over which the zero finder will search. That is, the
subroutine is called as zero(f, a, b). A more useful zero finder would not require the user to
input this extra information. This more general zero finder is especially appropriate for
calculators, where it is natural to simply key in a function, and awkward to then have to
specify the domain. However, it is easy to see why most zero finders require a domain. The
zero finder does its work by probing the function f at various values. If it probed for a value
outside the domain of f, the code for f might well compute 0/0 or , and the computation
would halt, unnecessarily aborting the zero finding process.

This problem can be avoided by introducing a special value called NaN, and specifying that
the computation of expressions like 0/0 and produce NaN, rather than halting. A list of
some of the situations that can cause a NaN are given in TABLE D-3. Then when zero(f)
probes outside the domain of f, the code for f will return NaN, and the zero finder can
continue. That is, zero(f) is not "punished" for making an incorrect guess. With this
example in mind, it is easy to see what the result of combining a NaN with an ordinary
floating-point number should be. Suppose that the final statement of f is return(-
b + sqrt(d))/(2*a). If d < 0, then f should return a NaN. Since d < 0, sqrt(d) is a NaN, and
-b + sqrt(d) will be a NaN, if the sum of a NaN and any other number is a NaN. Similarly if
one operand of a division operation is a NaN, the quotient should be a NaN. In general,
whenever a NaN participates in a floating-point operation, the result is another NaN.

TABLE D-3 Operations That
Produce a NaN

Operation NaN Produced By

+ + (-)

× 0 ×

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 19/64

/ 0/0, /

REM x REM 0, REM y

 (when x < 0)

Another approach to writing a zero solver that doesn't require the user to input a domain is
to use signals. The zero-finder could install a signal handler for floating-point exceptions.
Then if f was evaluated outside its domain and raised an exception, control would be
returned to the zero solver. The problem with this approach is that every language has a
different method of handling signals (if it has a method at all), and so it has no hope of
portability.

In IEEE 754, NaNs are often represented as floating-point numbers with the exponent emax
+ 1 and nonzero significands. Implementations are free to put system-dependent
information into the significand. Thus there is not a unique NaN, but rather a whole family of
NaNs. When a NaN and an ordinary floating-point number are combined, the result should
be the same as the NaN operand. Thus if the result of a long computation is a NaN, the
system-dependent information in the significand will be the information that was generated
when the first NaN in the computation was generated. Actually, there is a caveat to the last
statement. If both operands are NaNs, then the result will be one of those NaNs, but it might
not be the NaN that was generated first.

Infinity

Just as NaNs provide a way to continue a computation when expressions like 0/0 or are
encountered, infinities provide a way to continue when an overflow occurs. This is much
safer than simply returning the largest representable number. As an example, consider

computing , when = 10, p = 3, and emax = 98. If x = 3 × 1070 and y = 4 × 1070,

then x2 will overflow, and be replaced by 9.99 × 1098. Similarly y2, and x2 + y2 will each
overflow in turn, and be replaced by 9.99 × 1098. So the final result will be

 , which is drastically wrong: the correct answer is 5 × 1070. In IEEE

arithmetic, the result of x2 is , as is y2, x2 + y2 and . So the final result is , which
is safer than returning an ordinary floating-point number that is nowhere near the correct
answer.17

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, however, returns
infinity: 1/0 = , -1/0 = - . The reason for the distinction is this: if f(x) 0 and g(x) 0 as
x approaches some limit, then f(x)/g(x) could have any value. For example, when f(x) = sin x
and g(x) = x, then f(x)/g(x) 1 as x 0. But when f(x) = 1 - cos x, f(x)/g(x) 0. When
thinking of 0/0 as the limiting situation of a quotient of two very small numbers, 0/0 could
represent anything. Thus in the IEEE standard, 0/0 results in a NaN. But when c > 0, f(x)
c, and g(x) 0, then f(x)/g(x) ± , for any analytic functions f and g. If g(x) < 0 for small x,
then f(x)/g(x) - , otherwise the limit is + . So the IEEE standard defines c/0 = ± , as
long as c 0. The sign of depends on the signs of c and 0 in the usual way, so that -10/0
= - , and -10/-0 = + . You can distinguish between getting because of overflow and
getting because of division by zero by checking the status flags (which will be discussed
in detail in section Flags). The overflow flag will be set in the first case, the division by zero
flag in the second.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 20/64

The rule for determining the result of an operation that has infinity as an operand is simple:
replace infinity with a finite number x and take the limit as x . Thus 3/ = 0, because

 .

Similarly, 4 - = - , and = . When the limit doesn't exist, the result is a NaN, so /
 will be a NaN (TABLE D-3 has additional examples). This agrees with the reasoning used

to conclude that 0/0 should be a NaN.

When a subexpression evaluates to a NaN, the value of the entire expression is also a NaN.
In the case of ± however, the value of the expression might be an ordinary floating-point
number because of rules like 1/ = 0. Here is a practical example that makes use of the
rules for infinity arithmetic. Consider computing the function x/(x2 + 1). This is a bad formula,
because not only will it overflow when x is larger than , but infinity arithmetic will
give the wrong answer because it will yield 0, rather than a number near 1/x. However, x/(x2

+ 1) can be rewritten as 1/(x + x-1). This improved expression will not overflow prematurely
and because of infinity arithmetic will have the correct value when x = 0: 1/(0 + 0-1) = 1/(0 +

) = 1/ = 0. Without infinity arithmetic, the expression 1/(x + x-1) requires a test for x = 0,
which not only adds extra instructions, but may also disrupt a pipeline. This example
illustrates a general fact, namely that infinity arithmetic often avoids the need for special
case checking; however, formulas need to be carefully inspected to make sure they do not
have spurious behavior at infinity (as x/(x2 + 1) did).

Signed Zero

Zero is represented by the exponent emin - 1 and a zero significand. Since the sign bit can
take on two different values, there are two zeros, +0 and -0. If a distinction were made when
comparing +0 and -0, simple tests like if (x = 0) would have very unpredictable behavior,
depending on the sign of x. Thus the IEEE standard defines comparison so that +0 = -0,
rather than -0 < +0. Although it would be possible always to ignore the sign of zero, the
IEEE standard does not do so. When a multiplication or division involves a signed zero, the
usual sign rules apply in computing the sign of the answer. Thus 3·(+0) = +0, and +0/-3 = -0.
If zero did not have a sign, then the relation 1/(1/x) = x would fail to hold when x = ± . The
reason is that 1/- and 1/+ both result in 0, and 1/0 results in + , the sign information
having been lost. One way to restore the identity 1/(1/x) = x is to only have one kind of
infinity, however that would result in the disastrous consequence of losing the sign of an
overflowed quantity.

Another example of the use of signed zero concerns underflow and functions that have a
discontinuity at 0, such as log. In IEEE arithmetic, it is natural to define log 0 = - and log x
to be a NaN when x < 0. Suppose that x represents a small negative number that has
underflowed to zero. Thanks to signed zero, x will be negative, so log can return a NaN.
However, if there were no signed zero, the log function could not distinguish an underflowed
negative number from 0, and would therefore have to return - . Another example of a
function with a discontinuity at zero is the signum function, which returns the sign of a
number.

Probably the most interesting use of signed zero occurs in complex arithmetic. To take a
simple example, consider the equation . This is certainly true when z 0. If z
= -1, the obvious computation gives and . Thus,

 ! The problem can be traced to the fact that square root is multi-valued, and

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 21/64

there is no way to select the values so that it is continuous in the entire complex plane.
However, square root is continuous if a branch cut consisting of all negative real numbers is
excluded from consideration. This leaves the problem of what to do for the negative real
numbers, which are of the form -x + i0, where x > 0. Signed zero provides a perfect way to
resolve this problem. Numbers of the form x + i(+0) have one sign and numbers of the
form x + i(-0) on the other side of the branch cut have the other sign . In fact, the
natural formulas for computing will give these results.

Back to . If z =1 = -1 + i0, then

1/z = 1/(-1 + i0) = [(-1- i0)]/[(-1 + i0)(-1 - i0)] = (-1 -- i0)/((-1)2 - 02) = -1 + i(-0),

and so , while . Thus IEEE arithmetic preserves this
identity for all z. Some more sophisticated examples are given by Kahan [1987]. Although
distinguishing between +0 and -0 has advantages, it can occasionally be confusing. For
example, signed zero destroys the relation x = y 1/x = 1/y, which is false when x = +0
and y = -0. However, the IEEE committee decided that the advantages of utilizing the sign
of zero outweighed the disadvantages.

Denormalized Numbers

Consider normalized floating-point numbers with = 10, p = 3, and emin = -98. The

numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be perfectly ordinary floating-point
numbers, which are more than a factor of 10 larger than the smallest floating-point number
1.00 × 10-98. They have a strange property, however: x y = 0 even though x y! The
reason is that x - y = .06 × 10 -97 = 6.0 × 10-99 is too small to be represented as a
normalized number, and so must be flushed to zero. How important is it to preserve the
property

(10) x = y x - y = 0 ?

It's very easy to imagine writing the code fragment, if (x y) then z = 1/(x-y), and much
later having a program fail due to a spurious division by zero. Tracking down bugs like this
is frustrating and time consuming. On a more philosophical level, computer science
textbooks often point out that even though it is currently impractical to prove large programs
correct, designing programs with the idea of proving them often results in better code. For
example, introducing invariants is quite useful, even if they aren't going to be used as part of
a proof. Floating-point code is just like any other code: it helps to have provable facts on
which to depend. For example, when analyzing formula (6), it was very helpful to know that
x/2 < y < 2x x y = x - y. Similarly, knowing that (10) is true makes writing reliable
floating-point code easier. If it is only true for most numbers, it cannot be used to prove
anything.

The IEEE standard uses denormalized18 numbers, which guarantee (10), as well as other
useful relations. They are the most controversial part of the standard and probably
accounted for the long delay in getting 754 approved. Most high performance hardware that
claims to be IEEE compatible does not support denormalized numbers directly, but rather
traps when consuming or producing denormals, and leaves it to software to simulate the
IEEE standard.19 The idea behind denormalized numbers goes back to Goldberg [1967]
and is very simple. When the exponent is emin, the significand does not have to be

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 22/64

normalized, so that when = 10, p = 3 and emin = -98, 1.00 × 10-98 is no longer the

smallest floating-point number, because 0.98 × 10-98 is also a floating-point number.

There is a small snag when = 2 and a hidden bit is being used, since a number with an
exponent of emin will always have a significand greater than or equal to 1.0 because of the
implicit leading bit. The solution is similar to that used to represent 0, and is summarized in
TABLE D-2. The exponent emin is used to represent denormals. More formally, if the bits in
the significand field are b1, b2, ..., bp -1, and the value of the exponent is e, then when e >

emin - 1, the number being represented is 1.b1b2...bp - 1 × 2e whereas when e = emin - 1, the

number being represented is 0.b1b2...bp - 1 × 2e + 1. The +1 in the exponent is needed
because denormals have an exponent of emin, not emin - 1.

Recall the example of = 10, p = 3, emin = -98, x = 6.87 × 10-97 and y = 6.81 × 10-97

presented at the beginning of this section. With denormals, x - y does not flush to zero but is
instead represented by the denormalized number .6 × 10-98. This behavior is called gradual
underflow. It is easy to verify that (10) always holds when using gradual underflow.

FIGURE D-2 Flush To Zero Compared With Gradual Underflow

FIGURE D-2 illustrates denormalized numbers. The top number line in the figure shows
normalized floating-point numbers. Notice the gap between 0 and the smallest normalized
number . If the result of a floating-point calculation falls into this gulf, it is flushed to
zero. The bottom number line shows what happens when denormals are added to the set of
floating-point numbers. The "gulf" is filled in, and when the result of a calculation is less than

 , it is represented by the nearest denormal. When denormalized numbers are
added to the number line, the spacing between adjacent floating-point numbers varies in a
regular way: adjacent spacings are either the same length or differ by a factor of . Without
denormals, the

spacing abruptly changes from to , which is a factor of , rather than the
orderly change by a factor of . Because of this, many algorithms that can have large
relative error for normalized numbers close to the underflow threshold are well-behaved in
this range when gradual underflow is used.

Without gradual underflow, the simple expression x - y can have a very large relative error
for normalized inputs, as was seen above for x = 6.87 × 10-97 and y = 6.81 × 10-97. Large
relative errors can happen even without cancellation, as the following example shows
[Demmel 1984]. Consider dividing two complex numbers, a + ib and c + id. The obvious
formula

 · i

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 23/64

suffers from the problem that if either component of the denominator c + id is larger than
 , the formula will overflow, even though the final result may be well within range. A

better method of computing the quotients is to use Smith's formula:

(11)

Applying Smith's formula to (2 · 10-98 + i10-98)/(4 · 10-98 + i(2 · 10-98)) gives the correct
answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero, an error of 100 ulps. It
is typical for denormalized numbers to guarantee error bounds for arguments all the way
down to 1.0 x .

Exceptions, Flags and Trap Handlers

When an exceptional condition like division by zero or overflow occurs in IEEE arithmetic,
the default is to deliver a result and continue. Typical of the default results are NaN for 0/0
and , and for 1/0 and overflow. The preceding sections gave examples where
proceeding from an exception with these default values was the reasonable thing to do.
When any exception occurs, a status flag is also set. Implementations of the IEEE standard
are required to provide users with a way to read and write the status flags. The flags are
"sticky" in that once set, they remain set until explicitly cleared. Testing the flags is the only
way to distinguish 1/0, which is a genuine infinity from an overflow.

Sometimes continuing execution in the face of exception conditions is not appropriate. The
section Infinity gave the example of x/(x2 + 1). When x > , the denominator is
infinite, resulting in a final answer of 0, which is totally wrong. Although for this formula the
problem can be solved by rewriting it as 1/(x + x-1), rewriting may not always solve the
problem. The IEEE standard strongly recommends that implementations allow trap handlers
to be installed. Then when an exception occurs, the trap handler is called instead of setting
the flag. The value returned by the trap handler will be used as the result of the operation. It
is the responsibility of the trap handler to either clear or set the status flag; otherwise, the
value of the flag is allowed to be undefined.

The IEEE standard divides exceptions into 5 classes: overflow, underflow, division by zero,
invalid operation and inexact. There is a separate status flag for each class of exception.
The meaning of the first three exceptions is self-evident. Invalid operation covers the
situations listed in TABLE D-3, and any comparison that involves a NaN. The default result
of an operation that causes an invalid exception is to return a NaN, but the converse is not
true. When one of the operands to an operation is a NaN, the result is a NaN but no invalid
exception is raised unless the operation also satisfies one of the conditions in TABLE D-3.20

TABLE D-4 Exceptions in IEEE 754*

Exception Result when traps disabled Argument to trap handler

overflow ± or ±xmax round(x2-)

underflow 0, or denormal round(x2)

divide by zero ± operands

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 24/64

invalid NaN operands

inexact round(x) round(x)

*x is the exact result of the operation, = 192 for single precision, 1536 for double, and
xmax = 1.11 ...11 × .

The inexact exception is raised when the result of a floating-point operation is not exact. In
the = 10, p = 3 system, 3.5 4.2 = 14.7 is exact, but 3.5 4.3 = 15.0 is not exact (since
3.5 · 4.3 = 15.05), and raises an inexact exception. Binary to Decimal Conversion discusses
an algorithm that uses the inexact exception. A summary of the behavior of all five
exceptions is given in TABLE D-4.

There is an implementation issue connected with the fact that the inexact exception is
raised so often. If floating-point hardware does not have flags of its own, but instead
interrupts the operating system to signal a floating-point exception, the cost of inexact
exceptions could be prohibitive. This cost can be avoided by having the status flags
maintained by software. The first time an exception is raised, set the software flag for the
appropriate class, and tell the floating-point hardware to mask off that class of exceptions.
Then all further exceptions will run without interrupting the operating system. When a user
resets that status flag, the hardware mask is re-enabled.

Trap Handlers

One obvious use for trap handlers is for backward compatibility. Old codes that expect to be
aborted when exceptions occur can install a trap handler that aborts the process. This is
especially useful for codes with a loop like do S until (x >= 100). Since comparing a NaN to
a number with <, , >, , or = (but not) always returns false, this code will go into an
infinite loop if x ever becomes a NaN.

There is a more interesting use for trap handlers that comes up when computing products

such as that could potentially overflow. One solution is to use logarithms, and
compute exp instead. The problem with this approach is that it is less accurate, and

that it costs more than the simple expression , even if there is no overflow. There is
another solution using trap handlers called over/underflow counting that avoids both of
these problems [Sterbenz 1974].

The idea is as follows. There is a global counter initialized to zero. Whenever the partial

product overflows for some k, the trap handler increments the counter by one
and returns the overflowed quantity with the exponent wrapped around. In IEEE 754 single
precision, emax = 127, so if pk = 1.45 × 2130, it will overflow and cause the trap handler to be

called, which will wrap the exponent back into range, changing pk to 1.45 × 2-62 (see
below). Similarly, if pk underflows, the counter would be decremented, and negative
exponent would get wrapped around into a positive one. When all the multiplications are
done, if the counter is zero then the final product is pn. If the counter is positive, the product
overflowed, if the counter is negative, it underflowed. If none of the partial products are out
of range, the trap handler is never called and the computation incurs no extra cost. Even if
there are over/underflows, the calculation is more accurate than if it had been computed
with logarithms, because each pk was computed from pk - 1 using a full precision multiply.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 25/64

Barnett [1987] discusses a formula where the full accuracy of over/underflow counting
turned up an error in earlier tables of that formula.

IEEE 754 specifies that when an overflow or underflow trap handler is called, it is passed
the wrapped-around result as an argument. The definition of wrapped-around for overflow is
that the result is computed as if to infinite precision, then divided by 2 , and then rounded
to the relevant precision. For underflow, the result is multiplied by 2 . The exponent is
192 for single precision and 1536 for double precision. This is why 1.45 x 2130 was
transformed into 1.45 × 2-62 in the example above.

Rounding Modes

In the IEEE standard, rounding occurs whenever an operation has a result that is not exact,
since (with the exception of binary decimal conversion) each operation is computed exactly
and then rounded. By default, rounding means round toward nearest. The standard requires
that three other rounding modes be provided, namely round toward 0, round toward + ,
and round toward - . When used with the convert to integer operation, round toward -
causes the convert to become the floor function, while round toward + is ceiling. The
rounding mode affects overflow, because when round toward 0 or round toward - is in
effect, an overflow of positive magnitude causes the default result to be the largest
representable number, not + . Similarly, overflows of negative magnitude will produce the
largest negative number when round toward + or round toward 0 is in effect.

One application of rounding modes occurs in interval arithmetic (another is mentioned in
Binary to Decimal Conversion). When using interval arithmetic, the sum of two numbers x
and y is an interval , where is x y rounded toward - , and is x y rounded
toward + . The exact result of the addition is contained within the interval . Without
rounding modes, interval arithmetic is usually implemented by computing and

 , where is machine epsilon.21 This results in overestimates for the size of
the intervals. Since the result of an operation in interval arithmetic is an interval, in general
the input to an operation will also be an interval. If two intervals , and , are added,
the result is , where is with the rounding mode set to round toward - , and is

 with the rounding mode set to round toward + .

When a floating-point calculation is performed using interval arithmetic, the final answer is
an interval that contains the exact result of the calculation. This is not very helpful if the
interval turns out to be large (as it often does), since the correct answer could be anywhere
in that interval. Interval arithmetic makes more sense when used in conjunction with a
multiple precision floating-point package. The calculation is first performed with some
precision p. If interval arithmetic suggests that the final answer may be inaccurate, the
computation is redone with higher and higher precisions until the final interval is a
reasonable size.

Flags

The IEEE standard has a number of flags and modes. As discussed above, there is one
status flag for each of the five exceptions: underflow, overflow, division by zero, invalid
operation and inexact. There are four rounding modes: round toward nearest, round toward
+ , round toward 0, and round toward - . It is strongly recommended that there be an
enable mode bit for each of the five exceptions. This section gives some simple examples of
how these modes and flags can be put to good use. A more sophisticated example is
discussed in the section Binary to Decimal Conversion.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 26/64

Consider writing a subroutine to compute xn, where n is an integer. When n > 0, a simple
routine like

PositivePower(x,n) {

 while (n is even) {

 x = x*x

 n = n/2

 }

 u = x

 while (true) {

 n = n/2

 if (n==0) return u

 x = x*x

 if (n is odd) u = u*x

 }

If n < 0, then a more accurate way to compute xn is not to call PositivePower(1/x, -n) but
rather 1/PositivePower(x, -n), because the first expression multiplies n quantities each of
which have a rounding error from the division (i.e., 1/x). In the second expression these are
exact (i.e., x), and the final division commits just one additional rounding error.
Unfortunately, these is a slight snag in this strategy. If PositivePower(x, -n) underflows,
then either the underflow trap handler will be called, or else the underflow status flag will be
set. This is incorrect, because if x-n underflows, then xn will either overflow or be in range.22

But since the IEEE standard gives the user access to all the flags, the subroutine can easily
correct for this. It simply turns off the overflow and underflow trap enable bits and saves the
overflow and underflow status bits. It then computes 1/PositivePower(x, -n). If neither the
overflow nor underflow status bit is set, it restores them together with the trap enable bits. If
one of the status bits is set, it restores the flags and redoes the calculation using
PositivePower(1/x, -n), which causes the correct exceptions to occur.

Another example of the use of flags occurs when computing arccos via the formula

arccos x = 2 arctan .

If arctan() evaluates to /2, then arccos(-1) will correctly evaluate to 2·arctan() = ,
because of infinity arithmetic. However, there is a small snag, because the computation of
(1 - x)/(1 + x) will cause the divide by zero exception flag to be set, even though arccos(-1)
is not exceptional. The solution to this problem is straightforward. Simply save the value of
the divide by zero flag before computing arccos, and then restore its old value after the
computation.

Systems Aspects

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 27/64

The design of almost every aspect of a computer system requires knowledge about floating-
point. Computer architectures usually have floating-point instructions, compilers must
generate those floating-point instructions, and the operating system must decide what to do
when exception conditions are raised for those floating-point instructions. Computer system
designers rarely get guidance from numerical analysis texts, which are typically aimed at
users and writers of software, not at computer designers. As an example of how plausible
design decisions can lead to unexpected behavior, consider the following BASIC program.

q = 3.0/7.0

if q = 3.0/7.0 then print "Equal":

 else print "Not Equal"

When compiled and run using Borland's Turbo Basic on an IBM PC, the program prints Not
Equal! This example will be analyzed in the next section

Incidentally, some people think that the solution to such anomalies is never to compare
floating-point numbers for equality, but instead to consider them equal if they are within
some error bound E. This is hardly a cure-all because it raises as many questions as it
answers. What should the value of E be? If x < 0 and y > 0 are within E, should they really
be considered to be equal, even though they have different signs? Furthermore, the relation
defined by this rule, a ~ b |a - b| < E, is not an equivalence relation because a ~ b and b
~ c does not imply that a ~ c.

Instruction Sets

It is quite common for an algorithm to require a short burst of higher precision in order to

produce accurate results. One example occurs in the quadratic formula ()/2a.
As discussed in the section Proof of Theorem 4, when b2 4ac, rounding error can
contaminate up to half the digits in the roots computed with the quadratic formula. By
performing the subcalculation of b2 - 4ac in double precision, half the double precision bits
of the root are lost, which means that all the single precision bits are preserved.

The computation of b2 - 4ac in double precision when each of the quantities a, b, and c are
in single precision is easy if there is a multiplication instruction that takes two single
precision numbers and produces a double precision result. In order to produce the exactly
rounded product of two p-digit numbers, a multiplier needs to generate the entire 2p bits of
product, although it may throw bits away as it proceeds. Thus, hardware to compute a
double precision product from single precision operands will normally be only a little more
expensive than a single precision multiplier, and much cheaper than a double precision
multiplier. Despite this, modern instruction sets tend to provide only instructions that
produce a result of the same precision as the operands.23

If an instruction that combines two single precision operands to produce a double precision
product was only useful for the quadratic formula, it wouldn't be worth adding to an
instruction set. However, this instruction has many other uses. Consider the problem of
solving a system of linear equations,

a11x1 + a12x2 + · · · + a1nxn= b1
 a21x1 + a22x2 + · · · + a2nxn= b2

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 28/64

· · ·
 an1x1 + an2x2 + · · ·+ annxn= bn

which can be written in matrix form as Ax = b, where

Suppose that a solution x(1) is computed by some method, perhaps Gaussian elimination.
There is a simple way to improve the accuracy of the result called iterative improvement.
First compute

(12) = Ax(1) - b

and then solve the system

(13) Ay =

Note that if x(1) is an exact solution, then is the zero vector, as is y. In general, the
computation of and y will incur rounding error, so Ay Ax(1) - b = A(x(1) - x), where
x is the (unknown) true solution. Then y x(1) - x, so an improved estimate for the solution
is

(14) x(2) = x(1) - y

The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2), and x(2) with
x(3). This argument that x(i + 1) is more accurate than x(i) is only informal. For more
information, see [Golub and Van Loan 1989].

When performing iterative improvement, is a vector whose elements are the difference of
nearby inexact floating-point numbers, and so can suffer from catastrophic cancellation.
Thus iterative improvement is not very useful unless = Ax(1) - b is computed in double
precision. Once again, this is a case of computing the product of two single precision
numbers (A and x(1)), where the full double precision result is needed.

To summarize, instructions that multiply two floating-point numbers and return a product
with twice the precision of the operands make a useful addition to a floating-point instruction
set. Some of the implications of this for compilers are discussed in the next section.

Languages and Compilers

The interaction of compilers and floating-point is discussed in Farnum [1988], and much of
the discussion in this section is taken from that paper.

Ambiguity

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 29/64

Ideally, a language definition should define the semantics of the language precisely enough
to prove statements about programs. While this is usually true for the integer part of a
language, language definitions often have a large grey area when it comes to floating-point.
Perhaps this is due to the fact that many language designers believe that nothing can be
proven about floating-point, since it entails rounding error. If so, the previous sections have
demonstrated the fallacy in this reasoning. This section discusses some common grey
areas in language definitions, including suggestions about how to deal with them.

Remarkably enough, some languages don't clearly specify that if x is a floating-point
variable (with say a value of 3.0/10.0), then every occurrence of (say) 10.0*x must have the
same value. For example Ada, which is based on Brown's model, seems to imply that
floating-point arithmetic only has to satisfy Brown's axioms, and thus expressions can have
one of many possible values. Thinking about floating-point in this fuzzy way stands in sharp
contrast to the IEEE model, where the result of each floating-point operation is precisely
defined. In the IEEE model, we can prove that (3.0/10.0)*10.0 evaluates to 3 (Theorem 7).
In Brown's model, we cannot.

Another ambiguity in most language definitions concerns what happens on overflow,
underflow and other exceptions. The IEEE standard precisely specifies the behavior of
exceptions, and so languages that use the standard as a model can avoid any ambiguity on
this point.

Another grey area concerns the interpretation of parentheses. Due to roundoff errors, the
associative laws of algebra do not necessarily hold for floating-point numbers. For example,
the expression (x+y)+z has a totally different answer than x+(y+z) when x = 1030, y = -1030

and z = 1 (it is 1 in the former case, 0 in the latter). The importance of preserving
parentheses cannot be overemphasized. The algorithms presented in theorems 3, 4 and 6
all depend on it. For example, in Theorem 6, the formula xh = mx - (mx - x) would reduce to
xh = x if it weren't for parentheses, thereby destroying the entire algorithm. A language
definition that does not require parentheses to be honored is useless for floating-point
calculations.

Subexpression evaluation is imprecisely defined in many languages. Suppose that ds is
double precision, but x and y are single precision. Then in the expression ds + x*y is the
product performed in single or double precision? Another example: in x + m/n where m and n
are integers, is the division an integer operation or a floating-point one? There are two ways
to deal with this problem, neither of which is completely satisfactory. The first is to require
that all variables in an expression have the same type. This is the simplest solution, but has
some drawbacks. First of all, languages like Pascal that have subrange types allow mixing
subrange variables with integer variables, so it is somewhat bizarre to prohibit mixing single
and double precision variables. Another problem concerns constants. In the expression
0.1*x, most languages interpret 0.1 to be a single precision constant. Now suppose the
programmer decides to change the declaration of all the floating-point variables from single
to double precision. If 0.1 is still treated as a single precision constant, then there will be a
compile time error. The programmer will have to hunt down and change every floating-point
constant.

The second approach is to allow mixed expressions, in which case rules for subexpression
evaluation must be provided. There are a number of guiding examples. The original
definition of C required that every floating-point expression be computed in double precision
[Kernighan and Ritchie 1978]. This leads to anomalies like the example at the beginning of
this section. The expression 3.0/7.0 is computed in double precision, but if q is a single-
precision variable, the quotient is rounded to single precision for storage. Since 3/7 is a
repeating binary fraction, its computed value in double precision is different from its stored

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 30/64

value in single precision. Thus the comparison q = 3/7 fails. This suggests that computing
every expression in the highest precision available is not a good rule.

Another guiding example is inner products. If the inner product has thousands of terms, the
rounding error in the sum can become substantial. One way to reduce this rounding error is
to accumulate the sums in double precision (this will be discussed in more detail in the
section Optimizers). If d is a double precision variable, and x[] and y[] are single precision
arrays, then the inner product loop will look like d = d + x[i]*y[i]. If the multiplication is
done in single precision, than much of the advantage of double precision accumulation is
lost, because the product is truncated to single precision just before being added to a
double precision variable.

A rule that covers both of the previous two examples is to compute an expression in the
highest precision of any variable that occurs in that expression. Then q = 3.0/7.0 will be
computed entirely in single precision24 and will have the boolean value true, whereas d = d +
x[i]*y[i] will be computed in double precision, gaining the full advantage of double
precision accumulation. However, this rule is too simplistic to cover all cases cleanly. If dx
and dy are double precision variables, the expression y = x + single(dx-dy) contains a
double precision variable, but performing the sum in double precision would be pointless,
because both operands are single precision, as is the result.

A more sophisticated subexpression evaluation rule is as follows. First assign each
operation a tentative precision, which is the maximum of the precisions of its operands. This
assignment has to be carried out from the leaves to the root of the expression tree. Then
perform a second pass from the root to the leaves. In this pass, assign to each
operation the maximum of the tentative precision and the precision expected by the parent.
In the case of q = 3.0/7.0, every leaf is single precision, so all the operations are done in
single precision. In the case of d = d + x[i]*y[i], the tentative precision of the multiply
operation is single precision, but in the second pass it gets promoted to double precision,
because its parent operation expects a double precision operand. And in y = x + single(dx-
dy), the addition is done in single precision. Farnum [1988] presents evidence that this
algorithm in not difficult to implement.

The disadvantage of this rule is that the evaluation of a subexpression depends on the
expression in which it is embedded. This can have some annoying consequences. For
example, suppose you are debugging a program and want to know the value of a
subexpression. You cannot simply type the subexpression to the debugger and ask it to be
evaluated, because the value of the subexpression in the program depends on the
expression it is embedded in. A final comment on subexpressions: since converting decimal
constants to binary is an operation, the evaluation rule also affects the interpretation of
decimal constants. This is especially important for constants like 0.1 which are not exactly
representable in binary.

Another potential grey area occurs when a language includes exponentiation as one of its
built-in operations. Unlike the basic arithmetic operations, the value of exponentiation is not
always obvious [Kahan and Coonen 1982]. If ** is the exponentiation operator, then (-3)**3
certainly has the value -27. However, (-3.0)**3.0 is problematical. If the ** operator checks
for integer powers, it would compute (-3.0)**3.0 as -3.03 = -27. On the other hand, if the
formula xy = eylogx is used to define ** for real arguments, then depending on the log
function, the result could be a NaN (using the natural definition of log(x) = NaN when x < 0). If
the FORTRAN CLOG function is used however, then the answer will be -27, because the
ANSI FORTRAN standard defines CLOG(-3.0) to be i + log 3 [ANSI 1978]. The
programming language Ada avoids this problem by only defining exponentiation for integer
powers, while ANSI FORTRAN prohibits raising a negative number to a real power.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 31/64

In fact, the FORTRAN standard says that

Any arithmetic operation whose result is not mathematically defined is prohibited...

Unfortunately, with the introduction of ± by the IEEE standard, the meaning of not
mathematically defined is no longer totally clear cut. One definition might be to use the
method shown in section Infinity. For example, to determine the value of ab, consider non-
constant analytic functions f and g with the property that f(x) a and g(x) b as x 0. If
f(x)g(x) always approaches the same limit, then this should be the value of ab. This definition

would set 2 = which seems quite reasonable. In the case of 1.0 , when f(x) = 1 and
g(x) = 1/x the limit approaches 1, but when f(x) = 1 - x and g(x) = 1/x the limit is e-1. So 1.0

, should be a NaN. In the case of 00, f(x)g(x) = eg(x)log f(x). Since f and g are analytic and
take on the value 0 at 0, f(x) = a1x1 + a2x2 + ... and g(x) = b1x1 + b2x2 + Thus limx

0g(x) log f(x) = limx 0x log(x(a1 + a2x + ...)) = limx 0x log(a1x) = 0. So f(x)g(x) e0 = 1

for all f and g, which means that 00 = 1.25 26 Using this definition would unambiguously
define the exponential function for all arguments, and in particular would define (-3.0)**3.0
to be -27.

The IEEE Standard

The section The IEEE Standard," discussed many of the features of the IEEE standard.
However, the IEEE standard says nothing about how these features are to be accessed
from a programming language. Thus, there is usually a mismatch between floating-point
hardware that supports the standard and programming languages like C, Pascal or
FORTRAN. Some of the IEEE capabilities can be accessed through a library of subroutine
calls. For example the IEEE standard requires that square root be exactly rounded, and the
square root function is often implemented directly in hardware. This functionality is easily
accessed via a library square root routine. However, other aspects of the standard are not
so easily implemented as subroutines. For example, most computer languages specify at
most two floating-point types, while the IEEE standard has four different precisions
(although the recommended configurations are single plus single-extended or single,
double, and double-extended). Infinity provides another example. Constants to represent ±

 could be supplied by a subroutine. But that might make them unusable in places that
require constant expressions, such as the initializer of a constant variable.

A more subtle situation is manipulating the state associated with a computation, where the
state consists of the rounding modes, trap enable bits, trap handlers and exception flags.
One approach is to provide subroutines for reading and writing the state. In addition, a
single call that can atomically set a new value and return the old value is often useful. As
the examples in the section Flags show, a very common pattern of modifying IEEE state is
to change it only within the scope of a block or subroutine. Thus the burden is on the
programmer to find each exit from the block, and make sure the state is restored. Language
support for setting the state precisely in the scope of a block would be very useful here.
Modula-3 is one language that implements this idea for trap handlers [Nelson 1991].

There are a number of minor points that need to be considered when implementing the
IEEE standard in a language. Since x - x = +0 for all x,27 (+0) - (+0) = +0. However, -(+0) =
-0, thus -x should not be defined as 0 - x. The introduction of NaNs can be confusing,
because a NaN is never equal to any other number (including another NaN), so x = x is no
longer always true. In fact, the expression x x is the simplest way to test for a NaN if the
IEEE recommended function Isnan is not provided. Furthermore, NaNs are unordered with
respect to all other numbers, so x y cannot be defined as not x > y. Since the introduction

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 32/64

of NaNs causes floating-point numbers to become partially ordered, a compare function that
returns one of <, =, >, or unordered can make it easier for the programmer to deal with
comparisons.

Although the IEEE standard defines the basic floating-point operations to return a NaN if
any operand is a NaN, this might not always be the best definition for compound operations.
For example when computing the appropriate scale factor to use in plotting a graph, the
maximum of a set of values must be computed. In this case it makes sense for the max
operation to simply ignore NaNs.

Finally, rounding can be a problem. The IEEE standard defines rounding very precisely, and
it depends on the current value of the rounding modes. This sometimes conflicts with the
definition of implicit rounding in type conversions or the explicit round function in languages.
This means that programs which wish to use IEEE rounding can't use the natural language
primitives, and conversely the language primitives will be inefficient to implement on the
ever increasing number of IEEE machines.

Optimizers

Compiler texts tend to ignore the subject of floating-point. For example Aho et al. [1986]
mentions replacing x/2.0 with x*0.5, leading the reader to assume that x/10.0 should be
replaced by 0.1*x. However, these two expressions do not have the same semantics on a
binary machine, because 0.1 cannot be represented exactly in binary. This textbook also
suggests replacing x*y-x*z by x*(y-z), even though we have seen that these two
expressions can have quite different values when y z. Although it does qualify the
statement that any algebraic identity can be used when optimizing code by noting that
optimizers should not violate the language definition, it leaves the impression that floating-
point semantics are not very important. Whether or not the language standard specifies that
parenthesis must be honored, (x+y)+z can have a totally different answer than x+(y+z), as
discussed above. There is a problem closely related to preserving parentheses that is
illustrated by the following code

eps = 1;

do eps = 0.5*eps; while (eps + 1 > 1);

:

This is designed to give an estimate for machine epsilon. If an optimizing compiler notices
that eps + 1 > 1 eps > 0, the program will be changed completely. Instead of computing
the smallest number x such that 1 x is still greater than x (x e), it will compute
the largest number x for which x/2 is rounded to 0 (x). Avoiding this kind of
"optimization" is so important that it is worth presenting one more very useful algorithm that
is totally ruined by it.

Many problems, such as numerical integration and the numerical solution of differential
equations involve computing sums with many terms. Because each addition can potentially
introduce an error as large as .5 ulp, a sum involving thousands of terms can have quite a
bit of rounding error. A simple way to correct for this is to store the partial summand in a
double precision variable and to perform each addition using double precision. If the
calculation is being done in single precision, performing the sum in double precision is easy
on most computer systems. However, if the calculation is already being done in double
precision, doubling the precision is not so simple. One method that is sometimes advocated

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 33/64

is to sort the numbers and add them from smallest to largest. However, there is a much
more efficient method which dramatically improves the accuracy of sums, namely

Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

S = X[1];

C = 0;

for j = 2 to N {

 Y = X[j] - C;

 T = S + Y;

 C = (T - S) - Y;

 S = T;

}

Then the computed sum S is equal to where .

Using the naive formula , the computed sum is equal to where | j| < (n - j)e.
Comparing this with the error in the Kahan summation formula shows a dramatic
improvement. Each summand is perturbed by only 2e, instead of perturbations as large as
ne in the simple formula. Details are in, Errors In Summation.

An optimizer that believed floating-point arithmetic obeyed the laws of algebra would
conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering the algorithm completely useless.
These examples can be summarized by saying that optimizers should be extremely
cautious when applying algebraic identities that hold for the mathematical real numbers to
expressions involving floating-point variables.

Another way that optimizers can change the semantics of floating-point code involves
constants. In the expression 1.0E-40*x, there is an implicit decimal to binary conversion
operation that converts the decimal number to a binary constant. Because this constant
cannot be represented exactly in binary, the inexact exception should be raised. In addition,
the underflow flag should to be set if the expression is evaluated in single precision. Since
the constant is inexact, its exact conversion to binary depends on the current value of the
IEEE rounding modes. Thus an optimizer that converts 1.0E-40 to binary at compile time
would be changing the semantics of the program. However, constants like 27.5 which are
exactly representable in the smallest available precision can be safely converted at compile
time, since they are always exact, cannot raise any exception, and are unaffected by the
rounding modes. Constants that are intended to be converted at compile time should be
done with a constant declaration, such as const pi = 3.14159265.

Common subexpression elimination is another example of an optimization that can change
floating-point semantics, as illustrated by the following code

C = A*B;

RndMode = Up

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 34/64

D = A*B;

Although A*B can appear to be a common subexpression, it is not because the rounding
mode is different at the two evaluation sites. Three final examples: x = x cannot be replaced
by the boolean constant true, because it fails when x is a NaN; -x = 0 - x fails for x = +0;
and x < y is not the opposite of x y, because NaNs are neither greater than nor less than
ordinary floating-point numbers.

Despite these examples, there are useful optimizations that can be done on floating-point
code. First of all, there are algebraic identities that are valid for floating-point numbers.
Some examples in IEEE arithmetic are x + y = y + x, 2 × x = x + x, 1 × x = x, and 0.5× x =
x/2. However, even these simple identities can fail on a few machines such as CDC and
Cray supercomputers. Instruction scheduling and in-line procedure substitution are two
other potentially useful optimizations.28

As a final example, consider the expression dx = x*y, where x and y are single precision
variables, and dx is double precision. On machines that have an instruction that multiplies
two single precision numbers to produce a double precision number, dx = x*y can get
mapped to that instruction, rather than compiled to a series of instructions that convert the
operands to double and then perform a double to double precision multiply.

Some compiler writers view restrictions which prohibit converting (x + y) + z to x + (y + z) as
irrelevant, of interest only to programmers who use unportable tricks. Perhaps they have in
mind that floating-point numbers model real numbers and should obey the same laws that
real numbers do. The problem with real number semantics is that they are extremely
expensive to implement. Every time two n bit numbers are multiplied, the product will have
2n bits. Every time two n bit numbers with widely spaced exponents are added, the number
of bits in the sum is n + the space between the exponents. The sum could have up to (emax

- emin) + n bits, or roughly 2·emax + n bits. An algorithm that involves thousands of
operations (such as solving a linear system) will soon be operating on numbers with many
significant bits, and be hopelessly slow. The implementation of library functions such as sin
and cos is even more difficult, because the value of these transcendental functions aren't
rational numbers. Exact integer arithmetic is often provided by lisp systems and is handy for
some problems. However, exact floating-point arithmetic is rarely useful.

The fact is that there are useful algorithms (like the Kahan summation formula) that exploit
the fact that (x + y) + z x + (y + z), and work whenever the bound

a b = (a + b)(1 +)

holds (as well as similar bounds for -, × and /). Since these bounds hold for almost all
commercial hardware, it would be foolish for numerical programmers to ignore such
algorithms, and it would be irresponsible for compiler writers to destroy these algorithms by
pretending that floating-point variables have real number semantics.

Exception Handling

The topics discussed up to now have primarily concerned systems implications of accuracy
and precision. Trap handlers also raise some interesting systems issues. The IEEE
standard strongly recommends that users be able to specify a trap handler for each of the
five classes of exceptions, and the section Trap Handlers, gave some applications of user
defined trap handlers. In the case of invalid operation and division by zero exceptions, the

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 35/64

handler should be provided with the operands, otherwise, with the exactly rounded result.
Depending on the programming language being used, the trap handler might be able to
access other variables in the program as well. For all exceptions, the trap handler must be
able to identify what operation was being performed and the precision of its destination.

The IEEE standard assumes that operations are conceptually serial and that when an
interrupt occurs, it is possible to identify the operation and its operands. On machines which
have pipelining or multiple arithmetic units, when an exception occurs, it may not be enough
to simply have the trap handler examine the program counter. Hardware support for
identifying exactly which operation trapped may be necessary.

Another problem is illustrated by the following program fragment.

x = y*z;

z = x*w;

a = b + c;

d = a/x;

Suppose the second multiply raises an exception, and the trap handler wants to use the
value of a. On hardware that can do an add and multiply in parallel, an optimizer would
probably move the addition operation ahead of the second multiply, so that the add can
proceed in parallel with the first multiply. Thus when the second multiply traps, a = b + c has
already been executed, potentially changing the result of a. It would not be reasonable for a
compiler to avoid this kind of optimization, because every floating-point operation can
potentially trap, and thus virtually all instruction scheduling optimizations would be
eliminated. This problem can be avoided by prohibiting trap handlers from accessing any
variables of the program directly. Instead, the handler can be given the operands or result
as an argument.

But there are still problems. In the fragment

x = y*z;

z = a + b;

the two instructions might well be executed in parallel. If the multiply traps, its argument z
could already have been overwritten by the addition, especially since addition is usually
faster than multiply. Computer systems that support the IEEE standard must provide some
way to save the value of z, either in hardware or by having the compiler avoid such a
situation in the first place.

W. Kahan has proposed using presubstitution instead of trap handlers to avoid these
problems. In this method, the user specifies an exception and the value he wants to be used
as the result when the exception occurs. As an example, suppose that in code for
computing (sin x)/x, the user decides that x = 0 is so rare that it would improve performance
to avoid a test for x = 0, and instead handle this case when a 0/0 trap occurs. Using IEEE
trap handlers, the user would write a handler that returns a value of 1 and install it before
computing sin x/x. Using presubstitution, the user would specify that when an invalid
operation occurs, the value 1 should be used. Kahan calls this presubstitution, because the

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 36/64

value to be used must be specified before the exception occurs. When using trap handlers,
the value to be returned can be computed when the trap occurs.

The advantage of presubstitution is that it has a straightforward hardware implementation.29

As soon as the type of exception has been determined, it can be used to index a table
which contains the desired result of the operation. Although presubstitution has some
attractive attributes, the widespread acceptance of the IEEE standard makes it unlikely to
be widely implemented by hardware manufacturers.

The Details
A number of claims have been made in this paper concerning properties of floating-point
arithmetic. We now proceed to show that floating-point is not black magic, but rather is a
straightforward subject whose claims can be verified mathematically. This section is divided
into three parts. The first part presents an introduction to error analysis, and provides the
details for the section Rounding Error. The second part explores binary to decimal
conversion, filling in some gaps from the section The IEEE Standard. The third part
discusses the Kahan summation formula, which was used as an example in the section
Systems Aspects.

Rounding Error

In the discussion of rounding error, it was stated that a single guard digit is enough to
guarantee that addition and subtraction will always be accurate (Theorem 2). We now
proceed to verify this fact. Theorem 2 has two parts, one for subtraction and one for
addition. The part for subtraction is

Theorem 9

If x and y are positive floating-point numbers in a format with parameters and p, and if
subtraction is done with p + 1 digits (i.e. one guard digit), then the relative rounding error in
the result is less than

 e 2e.

Proof

Interchange x and y if necessary so that x > y. It is also harmless to scale x and y so that x
is represented by x0.x1 ... xp - 1 × 0. If y is represented as y0.y1 ... yp-1, then the difference
is exact. If y is represented as 0.y1 ... yp, then the guard digit ensures that the computed
difference will be the exact difference rounded to a floating-point number, so the rounding
error is at most e. In general, let y = 0.0 ... 0yk + 1 ... yk + p and be y truncated to p + 1
digits. Then

(15) y - < (- 1)(-p - 1 + -p - 2 + ... + -p - k).

From the definition of guard digit, the computed value of x - y is x - rounded to be a
floating-point number, that is, (x -) + , where the rounding error satisfies

(16) | | (/2) -p.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 37/64

The exact difference is x - y, so the error is (x - y) - (x - +) = - y + . There are three
cases. If x - y 1 then the relative error is bounded by

(17) -p [(- 1)(-1 + ... + -k) + /2] < -p(1 + /2) .

Secondly, if x - < 1, then = 0. Since the smallest that x - y can be is

 > (- 1)(-1 + ... + -k), where = - 1,

in this case the relative error is bounded by

(18) .

The final case is when x - y < 1 but x - 1. The only way this could happen is if x - = 1,
in which case = 0. But if = 0, then (18) applies, so that again the relative error is
bounded by -p < -p(1 + /2). z

When = 2, the bound is exactly 2e, and this bound is achieved for x= 1 + 22 - p and y = 21

- p - 21 - 2p in the limit as p . When adding numbers of the same sign, a guard digit is
not necessary to achieve good accuracy, as the following result shows.

Theorem 10

If x 0 and y 0, then the relative error in computing x + y is at most 2 , even if no guard
digits are used.

Proof

The algorithm for addition with k guard digits is similar to that for subtraction. If x y, shift y
right until the radix points of x and y are aligned. Discard any digits shifted past the p + k
position. Compute the sum of these two p + k digit numbers exactly. Then round to p digits.
We will verify the theorem when no guard digits are used; the general case is similar. There
is no loss of generality in assuming that x y 0 and that x is scaled to be of the form
d.dd...d × 0. First, assume there is no carry out. Then the digits shifted off the end of y
have a value less than -p + 1, and the sum is at least 1, so the relative error is less than -

p+1/1 = 2e. If there is a carry out, then the error from shifting must be added to the rounding
error of

 .

The sum is at least , so the relative error is less than

 2 . z

It is obvious that combining these two theorems gives Theorem 2. Theorem 2 gives the
relative error for performing one operation. Comparing the rounding error of x2 - y2 and (x +

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 38/64

y) (x - y) requires knowing the relative error of multiple operations. The relative error of x
y is 1 = [(x y) - (x - y)] / (x - y), which satisfies | 1| 2e. Or to write it another way

(19) x y = (x - y) (1 + 1), | 1| 2e

Similarly

(20) x y = (x + y) (1 + 2), | 2| 2e

Assuming that multiplication is performed by computing the exact product and then
rounding, the relative error is at most .5 ulp, so

(21) u v = uv (1 + 3), | 3| e

for any floating-point numbers u and v. Putting these three equations together (letting u = x
 y and v = x y) gives

(22) (x y) (x y) = (x - y) (1 + 1) (x + y) (1 + 2) (1 + 3)

So the relative error incurred when computing (x - y) (x + y) is

(23)

This relative error is equal to 1 + 2 + 3 + 1 2 + 1 3 + 2 3 + 1 2 3, which is

bounded by 5 + 8 2. In other words, the maximum relative error is about 5 rounding errors
(since e is a small number, e2 is almost negligible).

A similar analysis of (x x) (y y) cannot result in a small value for the relative error,
because when two nearby values of x and y are plugged into x2 - y2, the relative error will
usually be quite large. Another way to see this is to try and duplicate the analysis that
worked on (x y) (x y), yielding

(x x) (y y) = [x2(1 + 1) - y2(1 + 2)] (1 + 3)

= ((x2 - y2) (1 + 1) + (1 - 2)y2) (1 + 3)

When x and y are nearby, the error term (1 - 2)y2 can be as large as the result x2 - y2.

These computations formally justify our claim that (x - y) (x + y) is more accurate than x2 -
y2.

We next turn to an analysis of the formula for the area of a triangle. In order to estimate the
maximum error that can occur when computing with (7), the following fact will be needed.

Theorem 11

If subtraction is performed with a guard digit, and y/2 x 2y, then x - y is computed
exactly.

Proof

Note that if x and y have the same exponent, then certainly x y is exact. Otherwise, from
the condition of the theorem, the exponents can differ by at most 1. Scale and interchange x

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 39/64

and y if necessary so that 0 y x, and x is represented as x0.x1 ... xp - 1 and y as 0.y1 ...
yp. Then the algorithm for computing x y will compute x - y exactly and round to a floating-
point number. If the difference is of the form 0.d1 ... dp, the difference will already be p digits
long, and no rounding is necessary. Since x 2y, x - y y, and since y is of the form 0.d1
... dp, so is x - y. z

When > 2, the hypothesis of Theorem 11 cannot be replaced by y/ x y; the
stronger condition y/2 x 2y is still necessary. The analysis of the error in (x - y) (x + y),
immediately following the proof of Theorem 10, used the fact that the relative error in the
basic operations of addition and subtraction is small (namely equations (19) and (20)). This
is the most common kind of error analysis. However, analyzing formula (7) requires
something more, namely Theorem 11, as the following proof will show.

Theorem 12

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle (a b c), then
the relative error in computing (a + (b + c))(c - (a - b))(c + (a - b))(a +(b - c)) is at most 16 ,
provided e < .005.

Proof

Let's examine the factors one by one. From Theorem 10, b c = (b + c) (1 + 1), where 1
is the relative error, and | 1| 2 . Then the value of the first factor is

(a (b c)) = (a + (b c)) (1 + 2) = (a + (b + c) (1 + 1))(1 + 2),

and thus

(a + b + c) (1 - 2)2 [a + (b + c) (1 - 2)] · (1-2)
 a (b c)

 [a + (b + c) (1 + 2)] (1 + 2)
 (a + b + c) (1 + 2)2

This means that there is an 1 so that

(24) (a (b c)) = (a + b + c) (1 + 1)2, | 1| 2 .

The next term involves the potentially catastrophic subtraction of c and a b, because a
b may have rounding error. Because a, b and c are the sides of a triangle, a b+ c, and
combining this with the ordering c b a gives a b + c 2b 2a. So a - b satisfies
the conditions of Theorem 11. This means that a - b = a b is exact, hence c (a - b) is a
harmless subtraction which can be estimated from Theorem 9 to be

(25) (c (a b)) = (c - (a - b)) (1 + 2), | 2| 2

The third term is the sum of two exact positive quantities, so

(26) (c (a b)) = (c + (a - b)) (1 + 3), | 3| 2

Finally, the last term is

(27) (a (b c)) = (a + (b - c)) (1 + 4)2, | 4| 2 ,

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 40/64

using both Theorem 9 and Theorem 10. If multiplication is assumed to be exactly rounded,
so that x y = xy(1 +) with | | , then combining (24), (25), (26) and (27) gives

(a (b c)) (c (a b)) (c (a b)) (a (b c))
 (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E

where

E = (1 + 1)2 (1 + 2) (1 + 3) (1 + 4)2 (1 + 1)(1 + 2) (1 + 3)

An upper bound for E is (1 + 2)6(1 +)3, which expands out to 1 + 15 + O(2). Some
writers simply ignore the O(e2) term, but it is easy to account for it. Writing (1 + 2)6(1 +)3
= 1 + 15 + R(), R() is a polynomial in e with positive coefficients, so it is an increasing
function of . Since R(.005) = .505, R() < 1 for all < .005, and hence E (1 + 2)6(1 +

)3 < 1 + 16 . To get a lower bound on E, note that 1 - 15 - R() < E, and so when <
.005, 1 - 16 < (1 - 2)6(1 -)3. Combining these two bounds yields 1 - 16 < E < 1 + 16 .
Thus the relative error is at most 16 . z

Theorem 12 certainly shows that there is no catastrophic cancellation in formula (7). So
although it is not necessary to show formula (7) is numerically stable, it is satisfying to have
a bound for the entire formula, which is what Theorem 3 of Cancellation gives.

Proof of Theorem 3

Let

q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))

and

Q = (a (b c)) (c (a b)) (c (a b)) (a (b c)).

Then, Theorem 12 shows that Q = q(1 +), with 16 . It is easy to check that

(28)

provided .04/(.52)2 .15, and since | | 16 16(.005) = .08, does satisfy the
condition. Thus

 ,

with | 1| .52| | 8.5 . If square roots are computed to within .5 ulp, then the error when

computing is (1 + 1)(1 + 2), with | 2| . If = 2, then there is no further error
committed when dividing by 4. Otherwise, one more factor 1 + 3 with | 3| is
necessary for the division, and using the method in the proof of Theorem 12, the final error
bound of (1 + 1) (1 + 2) (1 + 3) is dominated by 1 + 4, with | 4| 11 . z

To make the heuristic explanation immediately following the statement of Theorem 4
precise, the next theorem describes just how closely µ(x) approximates a constant.

Theorem 13

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 41/64

If µ(x) = ln(1 + x)/x, then for 0 x , µ(x) 1 and the derivative satisfies |µ'(x)|
.

Proof

Note that µ(x) = 1 - x/2 + x2/3 - ... is an alternating series with decreasing terms, so for x
1, µ(x) 1 - x/2 1/2. It is even easier to see that because the series for µ is alternating,

µ(x) 1. The Taylor series of µ'(x) is also alternating, and if x has decreasing terms, so

- µ'(x) - + 2x/3, or - µ'(x) 0, thus |µ'(x)| . z

Proof of Theorem 4

Since the Taylor series for ln

is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error incurred when
approximating ln(1 + x) by x is bounded by x/2. If 1 x = 1, then |x| < , so the relative
error is bounded by /2.
When 1 x 1, define via 1 x = 1 + . Then since 0 x < 1, (1 x) 1 = . If

division and logarithms are computed to within ulp, then the computed value of the
expression ln(1 + x)/((1 + x) - 1) is

(29) (1 + 1) (1 + 2) = (1 + 1) (1 + 2) = µ() (1 + 1) (1 + 2)

where | 1| and | 2| . To estimate µ(), use the mean value theorem, which says
that

(30) µ() - µ(x) = (- x)µ'()

for some between x and . From the definition of , it follows that | - x| , and
combining this with Theorem 13 gives |µ() - µ(x)| /2, or |µ()/µ(x) - 1| /(2|µ(x)|)

 which means that µ() = µ(x) (1 + 3), with | 3| . Finally, multiplying by x introduces
a final 4, so the computed value of

x·ln(1 x)/((1 x) 1)

is

It is easy to check that if < 0.1, then

(1 + 1) (1 + 2) (1 + 3) (1 + 4) = 1 + ,

with | | 5 . z

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 42/64

An interesting example of error analysis using formulas (19), (20), and (21) occurs in the

quadratic formula . The section Cancellation, explained how rewriting the
equation will eliminate the potential cancellation caused by the ± operation. But there is
another potential cancellation that can occur when computing d = b2 - 4ac. This one cannot

be eliminated by a simple rearrangement of the formula. Roughly speaking, when b2 4ac,
rounding error can contaminate up to half the digits in the roots computed with the quadratic
formula. Here is an informal proof (another approach to estimating the error in the quadratic
formula appears in Kahan [1972]).

If b2 4ac, rounding error can contaminate up to half the digits in the roots computed with
the quadratic formula .

Proof: Write (b b) (4a c) = (b2(1 + 1) - 4ac(1 + 2)) (1 + 3), where | i| . 30

Using d = b2 - 4ac, this can be rewritten as (d(1 + 1) - 4ac(2 - 1)) (1 + 3). To get an
estimate for the size of this error, ignore second order terms in i, in which case the
absolute error is d(1 + 3) - 4ac 4, where | 4| = | 1 - 2| 2 . Since , the first

term d(1 + 3) can be ignored. To estimate the second term, use the fact that ax2 + bx + c
= a(x - r1) (x - r2), so ar1r2 = c. Since b2 4ac, then r1 r2, so the second error term is

 . Thus the computed value of is

 .

The inequality

shows that

 ,

where

 ,

so the absolute error in a is about . Since 4 -p, , and thus the

absolute error of destroys the bottom half of the bits of the roots r1 r2. In other

words, since the calculation of the roots involves computing with , and this
expression does not have meaningful bits in the position corresponding to the lower order
half of ri, then the lower order bits of ri cannot be meaningful. z

Finally, we turn to the proof of Theorem 6. It is based on the following fact, which is proven
in the section Theorem 14 and Theorem 8.

Theorem 14

Let 0 < k < p, and set m = k + 1, and assume that floating-point operations are exactly
rounded. Then (m x) (m x x) is exactly equal to x rounded to p - k significant

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 43/64

digits. More precisely, x is rounded by taking the significand of x, imagining a radix point just
left of the k least significant digits and rounding to an integer.

Proof of Theorem 6

By Theorem 14, xh is x rounded to p - k = places. If there is no carry out, then
certainly xh can be represented with significant digits. Suppose there is a carry-out. If

x = x0.x1 ... xp - 1 × e, then rounding adds 1 to xp - k - 1, and the only way there can be a
carry-out is if xp - k - 1 = - 1, but then the low order digit of xh is 1 + xp - k- 1 = 0, and so
again xh is representable in digits.

To deal with xl, scale x to be an integer satisfying p - 1 x p - 1. Let where

 is the p - k high order digits of x, and is the k low order digits. There are three cases to

consider. If , then rounding x to p - k places is the same as chopping and
 , and . Since has at most k digits, if p is even, then has at most k =

= digits. Otherwise, = 2 and is representable with k - 1 significant
bits. The second case is when , and then computing xh involves rounding up, so

xh = + k, and xl = x - xh = x - - k = - k. Once again, has at most k digits, so is

representable with p/2 digits. Finally, if = (/2) k - 1, then xh = or + k depending

on whether there is a round up. So xl is either (/2) k - 1 or (/2) k - 1 - k = - k/2, both of
which are represented with 1 digit. z

Theorem 6 gives a way to express the product of two working precision numbers exactly as
a sum. There is a companion formula for expressing a sum exactly. If |x| |y| then x + y = (x

 y) + (x (x y)) y [Dekker 1971; Knuth 1981, Theorem C in section 4.2.2]. However,
when using exactly rounded operations, this formula is only true for = 2, and not for =
10 as the example x = .99998, y = .99997 shows.

Binary to Decimal Conversion

Since single precision has p = 24, and 224 < 108, you might expect that converting a binary
number to 8 decimal digits would be sufficient to recover the original binary number.
However, this is not the case.

Theorem 15

When a binary IEEE single precision number is converted to the closest eight digit decimal
number, it is not always possible to uniquely recover the binary number from the decimal
one. However, if nine decimal digits are used, then converting the decimal number to the
closest binary number will recover the original floating-point number.

Proof

Binary single precision numbers lying in the half open interval [103, 210) = [1000, 1024)
have 10 bits to the left of the binary point, and 14 bits to the right of the binary point. Thus
there are (210 - 103)214 = 393,216 different binary numbers in that interval. If decimal
numbers are represented with 8 digits, then there are (210 - 103)104 = 240,000 decimal
numbers in the same interval. There is no way that 240,000 decimal numbers could

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 44/64

represent 393,216 different binary numbers. So 8 decimal digits are not enough to uniquely
represent each single precision binary number.
To show that 9 digits are sufficient, it is enough to show that the spacing between binary
numbers is always greater than the spacing between decimal numbers. This will ensure that
for each decimal number N, the interval

[N - ulp, N + ulp]

contains at most one binary number. Thus each binary number rounds to a unique decimal
number which in turn rounds to a unique binary number.
To show that the spacing between binary numbers is always greater than the spacing
between decimal numbers, consider an interval [10n, 10n + 1]. On this interval, the spacing
between consecutive decimal numbers is 10(n + 1) - 9. On [10n, 2m], where m is the smallest
integer so that 10n < 2m, the spacing of binary numbers is 2m - 24, and the spacing gets
larger further on in the interval. Thus it is enough to check that 10(n + 1) - 9 < 2m - 24. But in
fact, since 10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. z

The same argument applied to double precision shows that 17 decimal digits are required to
recover a double precision number.

Binary-decimal conversion also provides another example of the use of flags. Recall from
the section Precision, that to recover a binary number from its decimal expansion, the
decimal to binary conversion must be computed exactly. That conversion is performed by
multiplying the quantities N and 10|P| (which are both exact if p < 13) in single-extended
precision and then rounding this to single precision (or dividing if p < 0; both cases are
similar). Of course the computation of N · 10|P| cannot be exact; it is the combined operation
round(N · 10|P|) that must be exact, where the rounding is from single-extended to single
precision. To see why it might fail to be exact, take the simple case of = 10, p = 2 for
single, and p = 3 for single-extended. If the product is to be 12.51, then this would be
rounded to 12.5 as part of the single-extended multiply operation. Rounding to single
precision would give 12. But that answer is not correct, because rounding the product to
single precision should give 13. The error is due to double rounding.

By using the IEEE flags, double rounding can be avoided as follows. Save the current value
of the inexact flag, and then reset it. Set the rounding mode to round-to-zero. Then perform
the multiplication N · 10|P|. Store the new value of the inexact flag in ixflag, and restore the
rounding mode and inexact flag. If ixflag is 0, then N · 10|P| is exact, so round(N · 10|P|) will
be correct down to the last bit. If ixflag is 1, then some digits were truncated, since round-
to-zero always truncates. The significand of the product will look like 1.b1...b22b23...b31. A
double rounding error may occur if b23 ...b31 = 10...0. A simple way to account for both

cases is to perform a logical OR of ixflag with b31. Then round(N · 10|P|) will be computed
correctly in all cases.

Errors In Summation

The section Optimizers, mentioned the problem of accurately computing very long sums.
The simplest approach to improving accuracy is to double the precision. To get a rough
estimate of how much doubling the precision improves the accuracy of a sum, let s1 = x1,

s2 = s1 x2..., si = si - 1 xi. Then si = (1 + i) (si - 1 + xi), where i , and ignoring
second order terms in i gives

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 45/64

(31)

The first equality of (31) shows that the computed value of is the same as if an exact
summation was performed on perturbed values of xj. The first term x1 is perturbed by n ,
the last term xn by only . The second equality in (31) shows that error term is bounded by

 . Doubling the precision has the effect of squaring . If the sum is being done in an
IEEE double precision format, 1/ 1016, so that for any reasonable value of n.
Thus, doubling the precision takes the maximum perturbation of n and changes it to
. Thus the 2 error bound for the Kahan summation formula (Theorem 8) is not as good as
using double precision, even though it is much better than single precision.

For an intuitive explanation of why the Kahan summation formula works, consider the
following diagram of the procedure.

Each time a summand is added, there is a correction factor C which will be applied on the
next loop. So first subtract the correction C computed in the previous loop from Xj, giving
the corrected summand Y. Then add this summand to the running sum S. The low order bits
of Y (namely Yl) are lost in the sum. Next compute the high order bits of Y by computing T -
S. When Y is subtracted from this, the low order bits of Y will be recovered. These are the
bits that were lost in the first sum in the diagram. They become the correction factor for the
next loop. A formal proof of Theorem 8, taken from Knuth [1981] page 572, appears in the
section Theorem 14 and Theorem 8."

Summary
It is not uncommon for computer system designers to neglect the parts of a system related
to floating-point. This is probably due to the fact that floating-point is given very little (if any)
attention in the computer science curriculum. This in turn has caused the apparently
widespread belief that floating-point is not a quantifiable subject, and so there is little point in
fussing over the details of hardware and software that deal with it.

This paper has demonstrated that it is possible to reason rigorously about floating-point. For
example, floating-point algorithms involving cancellation can be proven to have small

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 46/64

relative errors if the underlying hardware has a guard digit, and there is an efficient
algorithm for binary-decimal conversion that can be proven to be invertible, provided that
extended precision is supported. The task of constructing reliable floating-point software is
made much easier when the underlying computer system is supportive of floating-point. In
addition to the two examples just mentioned (guard digits and extended precision), the
section Systems Aspects of this paper has examples ranging from instruction set design to
compiler optimization illustrating how to better support floating-point.

The increasing acceptance of the IEEE floating-point standard means that codes that utilize
features of the standard are becoming ever more portable. The section The IEEE Standard,
gave numerous examples illustrating how the features of the IEEE standard can be used in
writing practical floating-point codes.

Acknowledgments
This article was inspired by a course given by W. Kahan at Sun Microsystems from May
through July of 1988, which was very ably organized by David Hough of Sun. My hope is to
enable others to learn about the interaction of floating-point and computer systems without
having to get up in time to attend 8:00 a.m. lectures. Thanks are due to Kahan and many of
my colleagues at Xerox PARC (especially John Gilbert) for reading drafts of this paper and
providing many useful comments. Reviews from Paul Hilfinger and an anonymous referee
also helped improve the presentation.

References
Aho, Alfred V., Sethi, R., and Ullman J. D. 1986. Compilers: Principles, Techniques and
Tools, Addison-Wesley, Reading, MA.

ANSI 1978. American National Standard Programming Language FORTRAN, ANSI
Standard X3.9-1978, American National Standards Institute, New York, NY.

Barnett, David 1987. A Portable Floating-Point Environment, unpublished manuscript.

Brown, W. S. 1981. A Simple but Realistic Model of Floating-Point Computation, ACM
Trans. on Math. Software 7(4), pp. 445-480.

Cody, W. J et. al. 1984. A Proposed Radix- and Word-length-independent Standard for
Floating-point Arithmetic, IEEE Micro 4(4), pp. 86-100.

Cody, W. J. 1988. Floating-Point Standards -- Theory and Practice, in "Reliability in
Computing: the role of interval methods in scientific computing", ed. by Ramon E. Moore,
pp. 99-107, Academic Press, Boston, MA.

Coonen, Jerome 1984. Contributions to a Proposed Standard for Binary Floating-Point
Arithmetic, PhD Thesis, Univ. of California, Berkeley.

Dekker, T. J. 1971. A Floating-Point Technique for Extending the Available Precision,
Numer. Math. 18(3), pp. 224-242.

Demmel, James 1984. Underflow and the Reliability of Numerical Software, SIAM J. Sci.
Stat. Comput. 5(4), pp. 887-919.

Farnum, Charles 1988. Compiler Support for Floating-point Computation, Software-Practice
and Experience, 18(7), pp. 701-709.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 47/64

Forsythe, G. E. and Moler, C. B. 1967. Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Englewood Cliffs, NJ.

Goldberg, I. Bennett 1967. 27 Bits Are Not Enough for 8-Digit Accuracy, Comm. of the
ACM. 10(2), pp 105-106.

Goldberg, David 1990. Computer Arithmetic, in "Computer Architecture: A Quantitative
Approach", by David Patterson and John L. Hennessy, Appendix A, Morgan Kaufmann, Los
Altos, CA.

Golub, Gene H. and Van Loan, Charles F. 1989. Matrix Computations, 2nd edition,The
Johns Hopkins University Press, Baltimore Maryland.

Graham, Ronald L. , Knuth, Donald E. and Patashnik, Oren. 1989. Concrete Mathematics,
Addison-Wesley, Reading, MA, p.162.

Hewlett Packard 1982. HP-15C Advanced Functions Handbook.

IEEE 1987. IEEE Standard 754-1985 for Binary Floating-point Arithmetic, IEEE, (1985).
Reprinted in SIGPLAN 22(2) pp. 9-25.

Kahan, W. 1972. A Survey Of Error Analysis, in Information Processing 71, Vol 2, pp. 1214 -
1239 (Ljubljana, Yugoslavia), North Holland, Amsterdam.

Kahan, W. 1986. Calculating Area and Angle of a Needle-like Triangle, unpublished
manuscript.

Kahan, W. 1987. Branch Cuts for Complex Elementary Functions, in "The State of the Art in
Numerical Analysis", ed. by M.J.D. Powell and A. Iserles (Univ of Birmingham, England),
Chapter 7, Oxford University Press, New York.

Kahan, W. 1988. Unpublished lectures given at Sun Microsystems, Mountain View, CA.

Kahan, W. and Coonen, Jerome T. 1982. The Near Orthogonality of Syntax, Semantics, and
Diagnostics in Numerical Programming Environments, in "The Relationship Between
Numerical Computation And Programming Languages", ed. by J. K. Reid, pp. 103-115,
North-Holland, Amsterdam.

Kahan, W. and LeBlanc, E. 1985. Anomalies in the IBM Acrith Package, Proc. 7th IEEE
Symposium on Computer Arithmetic (Urbana, Illinois), pp. 322-331.

Kernighan, Brian W. and Ritchie, Dennis M. 1978. The C Programming Language, Prentice-
Hall, Englewood Cliffs, NJ.

Kirchner, R. and Kulisch, U. 1987. Arithmetic for Vector Processors, Proc. 8th IEEE
Symposium on Computer Arithmetic (Como, Italy), pp. 256-269.

Knuth, Donald E., 1981. The Art of Computer Programming, Volume II, Second Edition,
Addison-Wesley, Reading, MA.

Kulisch, U. W., and Miranker, W. L. 1986. The Arithmetic of the Digital Computer: A New
Approach, SIAM Review 28(1), pp 1-36.

Matula, D. W. and Kornerup, P. 1985. Finite Precision Rational Arithmetic: Slash Number
Systems, IEEE Trans. on Comput. C-34(1), pp 3-18.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 48/64

Nelson, G. 1991. Systems Programming With Modula-3, Prentice-Hall, Englewood Cliffs,
NJ.

Reiser, John F. and Knuth, Donald E. 1975. Evading the Drift in Floating-point Addition,
Information Processing Letters 3(3), pp 84-87.

Sterbenz, Pat H. 1974. Floating-Point Computation, Prentice-Hall, Englewood Cliffs, NJ.

Swartzlander, Earl E. and Alexopoulos, Aristides G. 1975. The Sign/Logarithm Number
System, IEEE Trans. Comput. C-24(12), pp. 1238-1242.

Walther, J. S., 1971. A unified algorithm for elementary functions, Proceedings of the AFIP
Spring Joint Computer Conf. 38, pp. 379-385.

Theorem 14 and Theorem 8
This section contains two of the more technical proofs that were omitted from the text.

Theorem 14

Let 0 < k < p, and set m = k + 1, and assume that floating-point operations are exactly
rounded. Then (m x) (m x x) is exactly equal to x rounded to p - k significant
digits. More precisely, x is rounded by taking the significand of x, imagining a radix point just
left of the k least significant digits, and rounding to an integer.

Proof

The proof breaks up into two cases, depending on whether or not the computation of mx =
kx + x has a carry-out or not.

Assume there is no carry out. It is harmless to scale x so that it is an integer. Then the
computation of mx = x + kx looks like this:

aa...aabb...bb

+ aa...aabb...bb

 zz...zzbb...bb

where x has been partitioned into two parts. The low order k digits are marked b and the
high order p - k digits are marked a. To compute m x from mx involves rounding off the
low order k digits (the ones marked with b) so

(32) m x = mx - x mod(k) + r k

The value of r is 1 if .bb...b is greater than and 0 otherwise. More precisely

(33) r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise.

Next compute m x - x = mx - x mod(k) + r k - x = k(x + r) - x mod(k). The picture
below shows the computation of m x - x rounded, that is, (m x) x. The top line is k(x
+ r), where B is the digit that results from adding r to the lowest order digit b.

aa...aabb...bB00...00

- bb...bb
zz... zzZ00...00

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 49/64

If .bb...b < then r = 0, subtracting causes a borrow from the digit marked B, but the
difference is rounded up, and so the net effect is that the rounded difference equals the top

line, which is kx. If .bb...b > then r = 1, and 1 is subtracted from B because of the

borrow, so the result is kx. Finally consider the case .bb...b = . If r = 0 then B is even, Z
is odd, and the difference is rounded up, giving kx. Similarly when r = 1, B is odd, Z is even,
the difference is rounded down, so again the difference is kx. To summarize

(34) (m x) x = kx

Combining equations (32) and (34) gives (m x) - (m x x) = x - x mod(k) + · k. The
result of performing this computation is

r00...00

 + aa...aabb...bb

- bb...bb

 aa...aA00...00

The rule for computing r, equation (33), is the same as the rule for rounding a... ab...b to p
- k places. Thus computing mx - (mx - x) in floating-point arithmetic precision is exactly
equal to rounding x to p - k places, in the case when x + kx does not carry out.
When x + kx does carry out, then mx = kx + x looks like this:

aa...aabb...bb

+ aa...aabb...bb

 zz...zZbb...bb

Thus, m x = mx - x mod(k) + w k, where w = -Z if Z < /2, but the exact value of w is
unimportant. Next, m x - x = kx - x mod(k) + w k. In a picture

aa...aabb...bb00...00

 - bb... bb

+ w
zz ... zZbb ...bb

31

Rounding gives (m x) x = kx + w k - r k, where r = 1 if .bb...b > or if .bb...b =
and b0 = 1.32 Finally,

(m x) - (m x x) = mx - x mod(k) + w k - (kx + w k - r k)
 = x - x mod(k) + r k.

And once again, r = 1 exactly when rounding a...ab...b to p - k places involves rounding
up. Thus Theorem 14 is proven in all cases. z

Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

S = X [1];

C = 0;

for j = 2 to N {

Y = X [j] - C;

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 50/64

 T = S + Y;

 C = (T - S) - Y;

 S = T;

}

Then the computed sum S is equal to S = xj (1 + j) + O(N 2) |xj|, where | j| 2 .

Proof

First recall how the error estimate for the simple formula xi went. Introduce s1 = x1, si = (1
+ i) (si - 1 + xi). Then the computed sum is sn, which is a sum of terms, each of which is an
xi multiplied by an expression involving j's. The exact coefficient of x1 is (1 + 2)(1 + 3) ...
(1 + n), and so by renumbering, the coefficient of x2 must be (1 + 3)(1 + 4) ... (1 + n),
and so on. The proof of Theorem 8 runs along exactly the same lines, only the coefficient of
x1 is more complicated. In detail s0 = c0 = 0 and

yk = xk ck - 1 = (xk - ck - 1) (1 + k)
sk = sk - 1 yk = (sk-1 + yk) (1 + k)
ck = (sk sk - 1) yk= [(sk - sk - 1) (1 + k) - yk] (1 + k)

where all the Greek letters are bounded by . Although the coefficient of x1 in sk is the
ultimate expression of interest, in turns out to be easier to compute the coefficient of x1 in sk
- ck and ck.
When k = 1,

c1 = (s1(1 + 1) - y1) (1 + d1)
= y1((1 + s1) (1 + 1) - 1) (1 + d1)
= x1(s1 + 1 + s1g1) (1 + d1) (1 + h1)
s1 - c1 = x1[(1 + s1) - (s1 + g1 + s1g1) (1 + d1)](1 + h1)
= x1[1 - g1 - s1d1 - s1g1 - d1g1 - s1g1d1](1 + h1)

Calling the coefficients of x1 in these expressions Ck and Sk respectively, then

C1 = 2 + O(2)
 S1 = + 1 - 1 + 4 2 + O(3)

To get the general formula for Sk and Ck, expand the definitions of sk and ck, ignoring all
terms involving xi with i > 1 to get

sk = (sk - 1 + yk)(1 + k)
= [sk - 1 + (xk - ck - 1) (1 + k)](1 + k)
= [(sk - 1 - ck - 1) - kck - 1](1+ k)
ck = [{sk - sk - 1}(1 + k) - yk](1 + k)
= [{((sk - 1 - ck - 1) - kck - 1)(1 + k) - sk - 1}(1 + k) + ck - 1(1 + k)](1 + k)
= [{(sk - 1 - ck - 1) k - kck-1(1 + k) - ck - 1}(1 + k) + ck - 1(1 + k)](1 + k)
= [(sk - 1 - ck - 1) k(1 + k) - ck - 1(k + k(k + k + k k))](1 + k),
sk - ck = ((sk - 1 - ck - 1) - kck - 1) (1 + k)

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 51/64

- [(sk - 1 - ck - 1) k(1 + k) - ck - 1(k + k(k + k + k k)](1 + k)
= (sk- 1 - ck - 1)((1 + k) - k(1 + k)(1 + k))
+ ck - 1(- k(1 + k) + (k + k(k + k + k k)) (1 + k))
= (s- 1 - ck - 1) (1 - k(k + k + k k))
+ ck - 1 - [k + k + k(k + k k) + (k + k(k + k + k k)) k]

Since Sk and Ck are only being computed up to order 2, these formulas can be simplified
to

Ck= (k + O(2))Sk - 1 + (- k + O(2))Ck - 1

Sk= ((1 + 2 2 + O(3))Sk - 1 + (2 + (2))Ck - 1

Using these formulas gives

C2 = 2 + O(2)
 S2 = 1 + 1 - 1 + 10 2 + O(3)

and in general it is easy to check by induction that

Ck = k + O(2)
 Sk = 1 + 1 - 1 + (4k+2) 2 + O(3)

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let xn + 1 = 0, let all the
Greek letters with subscripts of n + 1 equal 0, and compute sn + 1. Then sn + 1 = sn - cn, and
the coefficient of x1 in sn is less than the coefficient in sn + 1, which is Sn = 1 + 1 - 1 + (4n
+ 2) 2 = (1 + 2 + (n 2)). z

Differences Among IEEE 754 Implementations

Note – This section is not part of the published paper. It has been added to clarify certain
points and correct possible misconceptions about the IEEE standard that the reader might
infer from the paper. This material was not written by David Goldberg, but it appears here
with his permission.

The preceding paper has shown that floating-point arithmetic must be implemented
carefully, since programmers may depend on its properties for the correctness and accuracy
of their programs. In particular, the IEEE standard requires a careful implementation, and it
is possible to write useful programs that work correctly and deliver accurate results only on
systems that conform to the standard. The reader might be tempted to conclude that such
programs should be portable to all IEEE systems. Indeed, portable software would be easier
to write if the remark "When a program is moved between two machines and both support
IEEE arithmetic, then if any intermediate result differs, it must be because of software bugs,
not from differences in arithmetic," were true.

Unfortunately, the IEEE standard does not guarantee that the same program will deliver
identical results on all conforming systems. Most programs will actually produce different
results on different systems for a variety of reasons. For one, most programs involve the
conversion of numbers between decimal and binary formats, and the IEEE standard does
not completely specify the accuracy with which such conversions must be performed. For
another, many programs use elementary functions supplied by a system library, and the

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 52/64

standard doesn't specify these functions at all. Of course, most programmers know that
these features lie beyond the scope of the IEEE standard.

Many programmers may not realize that even a program that uses only the numeric formats
and operations prescribed by the IEEE standard can compute different results on different
systems. In fact, the authors of the standard intended to allow different implementations to
obtain different results. Their intent is evident in the definition of the term destination in the
IEEE 754 standard: "A destination may be either explicitly designated by the user or
implicitly supplied by the system (for example, intermediate results in subexpressions or
arguments for procedures). Some languages place the results of intermediate calculations
in destinations beyond the user's control. Nonetheless, this standard defines the result of an
operation in terms of that destination's format and the operands' values." (IEEE 754-1985,
p. 7) In other words, the IEEE standard requires that each result be rounded correctly to the
precision of the destination into which it will be placed, but the standard does not require
that the precision of that destination be determined by a user's program. Thus, different
systems may deliver their results to destinations with different precisions, causing the same
program to produce different results (sometimes dramatically so), even though those
systems all conform to the standard.

Several of the examples in the preceding paper depend on some knowledge of the way
floating-point arithmetic is rounded. In order to rely on examples such as these, a
programmer must be able to predict how a program will be interpreted, and in particular, on
an IEEE system, what the precision of the destination of each arithmetic operation may be.
Alas, the loophole in the IEEE standard's definition of destination undermines the
programmer's ability to know how a program will be interpreted. Consequently, several of
the examples given above, when implemented as apparently portable programs in a high-
level language, may not work correctly on IEEE systems that normally deliver results to
destinations with a different precision than the programmer expects. Other examples may
work, but proving that they work may lie beyond the average programmer's ability.

In this section, we classify existing implementations of IEEE 754 arithmetic based on the
precisions of the destination formats they normally use. We then review some examples
from the paper to show that delivering results in a wider precision than a program expects
can cause it to compute wrong results even though it is provably correct when the expected
precision is used. We also revisit one of the proofs in the paper to illustrate the intellectual
effort required to cope with unexpected precision even when it doesn't invalidate our
programs. These examples show that despite all that the IEEE standard prescribes, the
differences it allows among different implementations can prevent us from writing portable,
efficient numerical software whose behavior we can accurately predict. To develop such
software, then, we must first create programming languages and environments that limit the
variability the IEEE standard permits and allow programmers to express the floating-point
semantics upon which their programs depend.

Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two groups
distinguished by the degree to which they support different floating-point formats in
hardware. Extended-based systems, exemplified by the Intel x86 family of processors,
provide full support for an extended double precision format but only partial support for
single and double precision: they provide instructions to load or store data in single and
double precision, converting it on-the-fly to or from the extended double format, and they
provide special modes (not the default) in which the results of arithmetic operations are
rounded to single or double precision even though they are kept in registers in extended
double format. (Motorola 68000 series processors round results to both the precision and
range of the single or double formats in these modes. Intel x86 and compatible processors

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 53/64

round results to the precision of the single or double formats but retain the same range as
the extended double format.) Single/double systems, including most RISC processors,
provide full support for single and double precision formats but no support for an IEEE-
compliant extended double precision format. (The IBM POWER architecture provides only
partial support for single precision, but for the purpose of this section, we classify it as a
single/double system.)

To see how a computation might behave differently on an extended-based system than on a
single/double system, consider a C version of the example from the section Systems
Aspects:

int main() {

 double q;

 q = 3.0/7.0;

 if (q == 3.0/7.0) printf("Equal\n");

 else printf("Not Equal\n");

 return 0;

}

Here the constants 3.0 and 7.0 are interpreted as double precision floating-point numbers,
and the expression 3.0/7.0 inherits the double data type. On a single/double system, the
expression will be evaluated in double precision since that is the most efficient format to
use. Thus, q will be assigned the value 3.0/7.0 rounded correctly to double precision. In the
next line, the expression 3.0/7.0 will again be evaluated in double precision, and of course
the result will be equal to the value just assigned to q, so the program will print "Equal" as
expected.

On an extended-based system, even though the expression 3.0/7.0 has type double, the
quotient will be computed in a register in extended double format, and thus in the default
mode, it will be rounded to extended double precision. When the resulting value is assigned
to the variable q, however, it may then be stored in memory, and since q is declared double,
the value will be rounded to double precision. In the next line, the expression 3.0/7.0 may
again be evaluated in extended precision yielding a result that differs from the double
precision value stored in q, causing the program to print "Not equal". Of course, other
outcomes are possible, too: the compiler could decide to store and thus round the value of
the expression 3.0/7.0 in the second line before comparing it with q, or it could keep q in a
register in extended precision without storing it. An optimizing compiler might evaluate the
expression 3.0/7.0 at compile time, perhaps in double precision or perhaps in extended
double precision. (With one x86 compiler, the program prints "Equal" when compiled with
optimization and "Not Equal" when compiled for debugging.) Finally, some compilers for
extended-based systems automatically change the rounding precision mode to cause
operations producing results in registers to round those results to single or double precision,
albeit possibly with a wider range. Thus, on these systems, we can't predict the behavior of
the program simply by reading its source code and applying a basic understanding of IEEE
754 arithmetic. Neither can we accuse the hardware or the compiler of failing to provide an
IEEE 754 compliant environment; the hardware has delivered a correctly rounded result to
each destination, as it is required to do, and the compiler has assigned some intermediate
results to destinations that are beyond the user's control, as it is allowed to do.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 54/64

Pitfalls in Computations on Extended-Based Systems

Conventional wisdom maintains that extended-based systems must produce results that are
at least as accurate, if not more accurate than those delivered on single/double systems,
since the former always provide at least as much precision and often more than the latter.
Trivial examples such as the C program above as well as more subtle programs based on
the examples discussed below show that this wisdom is naive at best: some apparently
portable programs, which are indeed portable across single/double systems, deliver
incorrect results on extended-based systems precisely because the compiler and hardware
conspire to occasionally provide more precision than the program expects.

Current programming languages make it difficult for a program to specify the precision it
expects. As the section Languages and Compilers mentions, many programming languages
don't specify that each occurrence of an expression like 10.0*x in the same context should
evaluate to the same value. Some languages, such as Ada, were influenced in this respect
by variations among different arithmetics prior to the IEEE standard. More recently,
languages like ANSI C have been influenced by standard-conforming extended-based
systems. In fact, the ANSI C standard explicitly allows a compiler to evaluate a floating-point
expression to a precision wider than that normally associated with its type. As a result, the
value of the expression 10.0*x may vary in ways that depend on a variety of factors:
whether the expression is immediately assigned to a variable or appears as a
subexpression in a larger expression; whether the expression participates in a comparison;
whether the expression is passed as an argument to a function, and if so, whether the
argument is passed by value or by reference; the current precision mode; the level of
optimization at which the program was compiled; the precision mode and expression
evaluation method used by the compiler when the program was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression evaluation.
Extended-based systems run most efficiently when expressions are evaluated in extended
precision registers whenever possible, yet values that must be stored are stored in the
narrowest precision required. Constraining a language to require that 10.0*x evaluate to the
same value everywhere would impose a performance penalty on those systems.
Unfortunately, allowing those systems to evaluate 10.0*x differently in syntactically
equivalent contexts imposes a penalty of its own on programmers of accurate numerical
software by preventing them from relying on the syntax of their programs to express their
intended semantics.

Do real programs depend on the assumption that a given expression always evaluates to
the same value? Recall the algorithm presented in Theorem 4 for computing ln(1 + x),
written here in Fortran:

real function log1p(x)

real x

if (1.0 + x .eq. 1.0) then

 log1p = x

else

 log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)

endif

return

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 55/64

On an extended-based system, a compiler may evaluate the expression 1.0 + x in the third
line in extended precision and compare the result with 1.0. When the same expression is
passed to the log function in the sixth line, however, the compiler may store its value in
memory, rounding it to single precision. Thus, if x is not so small that 1.0 + x rounds to 1.0 in
extended precision but small enough that 1.0 + x rounds to 1.0 in single precision, then the
value returned by log1p(x) will be zero instead of x, and the relative error will be one--rather
larger than 5 . Similarly, suppose the rest of the expression in the sixth line, including the
reoccurrence of the subexpression 1.0 + x, is evaluated in extended precision. In that case,
if x is small but not quite small enough that 1.0 + x rounds to 1.0 in single precision, then the
value returned by log1p(x) can exceed the correct value by nearly as much as x, and again
the relative error can approach one. For a concrete example, take x to be 2-24 + 2-47, so x is
the smallest single precision number such that 1.0 + x rounds up to the next larger number,
1 + 2-23. Then log(1.0 + x) is approximately 2-23. Because the denominator in the
expression in the sixth line is evaluated in extended precision, it is computed exactly and
delivers x, so log1p(x) returns approximately 2-23, which is nearly twice as large as the
exact value. (This actually happens with at least one compiler. When the preceding code is
compiled by the Sun WorkShop Compilers 4.2.1 Fortran 77 compiler for x86 systems using
the -O optimization flag, the generated code computes 1.0 + x exactly as described. As a
result, the function delivers zero for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8).)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x must be evaluated
the same way each time it appears; the algorithm can fail on extended-based systems only
when 1.0 + x is evaluated to extended double precision in one instance and to single or
double precision in another. Of course, since log is a generic intrinsic function in Fortran, a
compiler could evaluate the expression 1.0 + x in extended precision throughout, computing
its logarithm in the same precision, but evidently we cannot assume that the compiler will do
so. (One can also imagine a similar example involving a user-defined function. In that case,
a compiler could still keep the argument in extended precision even though the function
returns a single precision result, but few if any existing Fortran compilers do this, either.) We
might therefore attempt to ensure that 1.0 + x is evaluated consistently by assigning it to a
variable. Unfortunately, if we declare that variable real, we may still be foiled by a compiler
that substitutes a value kept in a register in extended precision for one appearance of the
variable and a value stored in memory in single precision for another. Instead, we would
need to declare the variable with a type that corresponds to the extended precision format.
Standard FORTRAN 77 does not provide a way to do this, and while Fortran 95 offers the
SELECTED_REAL_KIND mechanism for describing various formats, it does not explicitly require
implementations that evaluate expressions in extended precision to allow variables to be
declared with that precision. In short, there is no portable way to write this program in
standard Fortran that is guaranteed to prevent the expression 1.0 + x from being evaluated
in a way that invalidates our proof.

There are other examples that can malfunction on extended-based systems even when
each subexpression is stored and thus rounded to the same precision. The cause is double-
rounding. In the default precision mode, an extended-based system will initially round each
result to extended double precision. If that result is then stored to double precision, it is
rounded again. The combination of these two roundings can yield a value that is different
than what would have been obtained by rounding the first result correctly to double
precision. This can happen when the result as rounded to extended double precision is a
"halfway case", i.e., it lies exactly halfway between two double precision numbers, so the
second rounding is determined by the round-ties-to-even rule. If this second rounding
rounds in the same direction as the first, the net rounding error will exceed half a unit in the
last place. (Note, though, that double-rounding only affects double precision computations.
One can prove that the sum, difference, product, or quotient of two p-bit numbers, or the
square root of a p-bit number, rounded first to q bits and then to p bits gives the same value

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 56/64

as if the result were rounded just once to p bits provided q 2p + 2. Thus, extended double
precision is wide enough that single precision computations don't suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with double-rounding. In fact,
even some algorithms that don't require correct rounding and work correctly on a variety of
machines that don't conform to IEEE 754 can fail with double-rounding. The most useful of
these are the portable algorithms for performing simulated multiple precision arithmetic
mentioned in the section Exactly Rounded Operations. For example, the procedure
described in Theorem 6 for splitting a floating-point number into high and low parts doesn't
work correctly in double-rounding arithmetic: try to split the double precision number 252 +
3 × 226 - 1 into two parts each with at most 26 bits. When each operation is rounded
correctly to double precision, the high order part is 252 + 227 and the low order part is 226 -
1, but when each operation is rounded first to extended double precision and then to double
precision, the procedure produces a high order part of 252 + 228 and a low order part of -226

- 1. The latter number occupies 27 bits, so its square can't be computed exactly in double
precision. Of course, it would still be possible to compute the square of this number in
extended double precision, but the resulting algorithm would no longer be portable to
single/double systems. Also, later steps in the multiple precision multiplication algorithm
assume that all partial products have been computed in double precision. Handling a
mixture of double and extended double variables correctly would make the implementation
significantly more expensive.

Likewise, portable algorithms for adding multiple precision numbers represented as arrays
of double precision numbers can fail in double-rounding arithmetic. These algorithms
typically rely on a technique similar to Kahan's summation formula. As the informal
explanation of the summation formula given on Errors In Summation suggests, if s and y are
floating-point variables with |s| |y| and we compute:

t = s + y;

e = (s - t) + y;

then in most arithmetics, e recovers exactly the roundoff error that occurred in computing t.
This technique doesn't work in double-rounded arithmetic, however: if s = 252 + 1 and y =
1/2 - 2-54, then s + y rounds first to 252 + 3/2 in extended double precision, and this value
rounds to 252 + 2 in double precision by the round-ties-to-even rule; thus the net rounding
error in computing t is 1/2 + 2-54, which is not representable exactly in double precision and
so can't be computed exactly by the expression shown above. Here again, it would be
possible to recover the roundoff error by computing the sum in extended double precision,
but then a program would have to do extra work to reduce the final outputs back to double
precision, and double-rounding could afflict this process, too. For this reason, although
portable programs for simulating multiple precision arithmetic by these methods work
correctly and efficiently on a wide variety of machines, they do not work as advertised on
extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct rounding may in fact
work correctly with double-rounding. In these cases, the cost of coping with double-rounding
lies not in the implementation but in the verification that the algorithm works as advertised.
To illustrate, we prove the following variant of Theorem 7:

Theorem 7'

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 57/64

If m and n are integers representable in IEEE 754 double precision with |m| < 252 and n has
the special form n = 2i + 2j, then (m n) n = m, provided both floating-point operations
are either rounded correctly to double precision or rounded first to extended double
precision and then to double precision.

Proof

Assume without loss that m > 0. Let q = m n. Scaling by powers of two, we can consider
an equivalent setting in which 252 m < 253 and likewise for q, so that both m and q are
integers whose least significant bits occupy the units place (i.e., ulp(m) = ulp(q) = 1). Before
scaling, we assumed m < 252, so after scaling, m is an even integer. Also, because the
scaled values of m and q satisfy m/2 < q < 2m, the corresponding value of n must have one
of two forms depending on which of m or q is larger: if q < m, then evidently 1 < n < 2, and
since n is a sum of two powers of two, n = 1 + 2-k for some k; similarly, if q > m, then 1/2 < n
< 1, so n = 1/2 + 2-(k + 1). (As n is the sum of two powers of two, the closest possible value
of n to one is n = 1 + 2-52. Because m/(1 + 2-52) is no larger than the next smaller double
precision number less than m, we can't have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and the computed value
q n will be the (once or twice) rounded value of m + ne. Consider first the case in which
each floating-point operation is rounded correctly to double precision. In this case, |e| < 1/2.
If n has the form 1/2 + 2-(k + 1), then ne = nq - m is an integer multiple of 2-(k + 1) and |ne| <
1/4 + 2-(k + 2). This implies that |ne| 1/4. Recall that the difference between m and the
next larger representable number is 1 and the difference between m and the next smaller
representable number is either 1 if m > 252 or 1/2 if m = 252. Thus, as |ne| 1/4, m + ne
will round to m. (Even if m = 252 and ne = -1/4, the product will round to m by the round-ties-
to-even rule.) Similarly, if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and
|ne| < 1/2 + 2-(k + 1); this implies |ne| 1/2. We can't have m = 252 in this case because m
is strictly greater than q, so m differs from its nearest representable neighbors by ±1. Thus,
as |ne| 1/2, again m + ne will round to m. (Even if |ne| = 1/2, the product will round to m
by the round-ties-to-even rule because m is even.) This completes the proof for correctly
rounded arithmetic.

In double-rounding arithmetic, it may still happen that q is the correctly rounded quotient
(even though it was actually rounded twice), so |e| < 1/2 as above. In this case, we can
appeal to the arguments of the previous paragraph provided we consider the fact that q n
will be rounded twice. To account for this, note that the IEEE standard requires that an
extended double format carry at least 64 significant bits, so that the numbers m ± 1/2 and m
± 1/4 are exactly representable in extended double precision. Thus, if n has the form 1/2 +
2-(k + 1), so that |ne| 1/4, then rounding m + ne to extended double precision must
produce a result that differs from m by at most 1/4, and as noted above, this value will round
to m in double precision. Similarly, if n has the form 1 + 2-k, so that |ne| 1/2, then
rounding m + ne to extended double precision must produce a result that differs from m by
at most 1/2, and this value will round to m in double precision. (Recall that m > 252 in this
case.)

Finally, we are left to consider cases in which q is not the correctly rounded quotient due to
double-rounding. In these cases, we have |e| < 1/2 + 2-(d + 1) in the worst case, where d is
the number of extra bits in the extended double format. (All existing extended-based
systems support an extended double format with exactly 64 significant bits; for this format, d
= 64 - 53 = 11.) Because double-rounding only produces an incorrectly rounded result when

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 58/64

the second rounding is determined by the round-ties-to-even rule, q must be an even
integer. Thus if n has the form 1/2 + 2-(k + 1), then ne = nq - m is an integer multiple of 2-k,
and

|ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2).

If k d, this implies |ne| 1/4. If k > d, we have |ne| 1/4 + 2-(d + 2). In either case, the
first rounding of the product will deliver a result that differs from m by at most 1/4, and by
previous arguments, the second rounding will round to m. Similarly, if n has the form 1 + 2-k,
then ne is an integer multiple of 2-(k - 1), and

|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).

If k d, this implies |ne| 1/2. If k > d, we have |ne| 1/2 + 2-(d + 1). In either case, the
first rounding of the product will deliver a result that differs from m by at most 1/2, and again
by previous arguments, the second rounding will round to m. z

The preceding proof shows that the product can incur double-rounding only if the quotient
does, and even then, it rounds to the correct result. The proof also shows that extending our
reasoning to include the possibility of double-rounding can be challenging even for a
program with only two floating-point operations. For a more complicated program, it may be
impossible to systematically account for the effects of double-rounding, not to mention more
general combinations of double and extended double precision computations.

Programming Language Support for Extended Precision

The preceding examples should not be taken to suggest that extended precision per se is
harmful. Many programs can benefit from extended precision when the programmer is able
to use it selectively. Unfortunately, current programming languages do not provide sufficient
means for a programmer to specify when and how extended precision should be used. To
indicate what support is needed, we consider the ways in which we might want to manage
the use of extended precision.

In a portable program that uses double precision as its nominal working precision, there are
five ways we might want to control the use of a wider precision:

1. Compile to produce the fastest code, using extended precision where possible on
extended-based systems. Clearly most numerical software does not require more of
the arithmetic than that the relative error in each operation is bounded by the
"machine epsilon". When data in memory are stored in double precision, the machine
epsilon is usually taken to be the largest relative roundoff error in that precision, since
the input data are (rightly or wrongly) assumed to have been rounded when they were
entered and the results will likewise be rounded when they are stored. Thus, while
computing some of the intermediate results in extended precision may yield a more
accurate result, extended precision is not essential. In this case, we might prefer that
the compiler use extended precision only when it will not appreciably slow the program
and use double precision otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough, otherwise
resort to something else. Some computations can be performed more easily when
extended precision is available, but they can also be carried out in double precision
with only somewhat greater effort. Consider computing the Euclidean norm of a vector
of double precision numbers. By computing the squares of the elements and
accumulating their sum in an IEEE 754 extended double format with its wider

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 59/64

exponent range, we can trivially avoid premature underflow or overflow for vectors of
practical lengths. On extended-based systems, this is the fastest way to compute the
norm. On single/double systems, an extended double format would have to be
emulated in software (if one were supported at all), and such emulation would be
much slower than simply using double precision, testing the exception flags to
determine whether underflow or overflow occurred, and if so, repeating the
computation with explicit scaling. Note that to support this use of extended precision, a
language must provide both an indication of the widest available format that is
reasonably fast, so that a program can choose which method to use, and
environmental parameters that indicate the precision and range of each format, so that
the program can verify that the widest fast format is wide enough (e.g., that it has
wider range than double).

3. Use a format wider than double even if it has to be emulated in software. For more
complicated programs than the Euclidean norm example, the programmer may simply
wish to avoid the need to write two versions of the program and instead rely on
extended precision even if it is slow. Again, the language must provide environmental
parameters so that the program can determine the range and precision of the widest
available format.

4. Don't use a wider precision; round results correctly to the precision of the double
format, albeit possibly with extended range. For programs that are most easily written
to depend on correctly rounded double precision arithmetic, including some of the
examples mentioned above, a language must provide a way for the programmer to
indicate that extended precision must not be used, even though intermediate results
may be computed in registers with a wider exponent range than double. (Intermediate
results computed in this way can still incur double-rounding if they underflow when
stored to memory: if the result of an arithmetic operation is rounded first to 53
significant bits, then rounded again to fewer significant bits when it must be
denormalized, the final result may differ from what would have been obtained by
rounding just once to a denormalized number. Of course, this form of double-rounding
is highly unlikely to affect any practical program adversely.)

5. Round results correctly to both the precision and range of the double format. This
strict enforcement of double precision would be most useful for programs that test
either numerical software or the arithmetic itself near the limits of both the range and
precision of the double format. Such careful test programs tend to be difficult to write
in a portable way; they become even more difficult (and error prone) when they must
employ dummy subroutines and other tricks to force results to be rounded to a
particular format. Thus, a programmer using an extended-based system to develop
robust software that must be portable to all IEEE 754 implementations would quickly
come to appreciate being able to emulate the arithmetic of single/double systems
without extraordinary effort.

No current language supports all five of these options. In fact, few languages have
attempted to give the programmer the ability to control the use of extended precision at all.
One notable exception is the ISO/IEC 9899:1999 Programming Languages - C standard,
the latest revision to the C language, which is now in the final stages of standardization.

The C99 standard allows an implementation to evaluate expressions in a format wider than
that normally associated with their type, but the C99 standard recommends using one of
only three expression evaluation methods. The three recommended methods are
characterized by the extent to which expressions are "promoted" to wider formats, and the
implementation is encouraged to identify which method it uses by defining the preprocessor
macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each expression is evaluated in a format

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 60/64

that corresponds to its type; if FLT_EVAL_METHOD is 1, float expressions are promoted to the
format that corresponds to double; and if FLT_EVAL_METHOD is 2, float and double
expressions are promoted to the format that corresponds to long double. (An
implementation is allowed to set FLT_EVAL_METHOD to -1 to indicate that the expression
evaluation method is indeterminable.) The C99 standard also requires that the <math.h>
header file define the types float_t and double_t, which are at least as wide as float and
double, respectively, and are intended to match the types used to evaluate float and double
expressions. For example, if FLT_EVAL_METHOD is 2, both float_t and double_t are long
double. Finally, the C99 standard requires that the <float.h> header file define
preprocessor macros that specify the range and precision of the formats corresponding to
each floating-point type.

The combination of features required or recommended by the C99 standard supports some
of the five options listed above but not all. For example, if an implementation maps the long
double type to an extended double format and defines FLT_EVAL_METHOD to be 2, the
programmer can reasonably assume that extended precision is relatively fast, so programs
like the Euclidean norm example can simply use intermediate variables of type long double
(or double_t). On the other hand, the same implementation must keep anonymous
expressions in extended precision even when they are stored in memory (e.g., when the
compiler must spill floating-point registers), and it must store the results of expressions
assigned to variables declared double to convert them to double precision even if they could
have been kept in registers. Thus, neither the double nor the double_t type can be compiled
to produce the fastest code on current extended-based hardware.

Likewise, the C99 standard provides solutions to some of the problems illustrated by the
examples in this section but not all. A C99 standard version of the log1p function is
guaranteed to work correctly if the expression 1.0 + x is assigned to a variable (of any type)
and that variable used throughout. A portable, efficient C99 standard program for splitting a
double precision number into high and low parts, however, is more difficult: how can we split
at the correct position and avoid double-rounding if we cannot guarantee that double
expressions are rounded correctly to double precision? One solution is to use the double_t
type to perform the splitting in double precision on single/double systems and in extended
precision on extended-based systems, so that in either case the arithmetic will be correctly
rounded. Theorem 14 says that we can split at any bit position provided we know the
precision of the underlying arithmetic, and the FLT_EVAL_METHOD and environmental
parameter macros should give us this information.

The following fragment shows one possible implementation:

#include <math.h>

#include <float.h>

#if (FLT_EVAL_METHOD==2)

#define PWR2 LDBL_MANT_DIG - (DBL_MANT_DIG/2)

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))

#define PWR2 DBL_MANT_DIG - (DBL_MANT_DIG/2)

#else

#error FLT_EVAL_METHOD unknown!

#endif

...

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 61/64

 double x, xh, xl;

 double_t m;

 m = scalbn(1.0, PWR2) + 1.0; // 2**PWR2 + 1

 xh = (m * x) - ((m * x) - x);

 xl = x - xh;

Of course, to find this solution, the programmer must know that double expressions may be
evaluated in extended precision, that the ensuing double-rounding problem can cause the
algorithm to malfunction, and that extended precision may be used instead according to
Theorem 14. A more obvious solution is simply to specify that each expression be rounded
correctly to double precision. On extended-based systems, this merely requires changing
the rounding precision mode, but unfortunately, the C99 standard does not provide a
portable way to do this. (Early drafts of the Floating-Point C Edits, the working document
that specified the changes to be made to the C90 standard to support floating-point,
recommended that implementations on systems with rounding precision modes provide
fegetprec and fesetprec functions to get and set the rounding precision, analogous to the
fegetround and fesetround functions that get and set the rounding direction. This
recommendation was removed before the changes were made to the C99 standard.)

Coincidentally, the C99 standard's approach to supporting portability among systems with
different integer arithmetic capabilities suggests a better way to support different floating-
point architectures. Each C99 standard implementation supplies an <stdint.h> header file
that defines those integer types the implementation supports, named according to their
sizes and efficiency: for example, int32_t is an integer type exactly 32 bits wide,
int_fast16_t is the implementation's fastest integer type at least 16 bits wide, and intmax_t
is the widest integer type supported. One can imagine a similar scheme for floating-point
types: for example, float53_t could name a floating-point type with exactly 53 bit precision
but possibly wider range, float_fast24_t could name the implementation's fastest type with
at least 24 bit precision, and floatmax_t could name the widest reasonably fast type
supported. The fast types could allow compilers on extended-based systems to generate
the fastest possible code subject only to the constraint that the values of named variables
must not appear to change as a result of register spilling. The exact width types would
cause compilers on extended-based systems to set the rounding precision mode to round to
the specified precision, allowing wider range subject to the same constraint. Finally,
double_t could name a type with both the precision and range of the IEEE 754 double
format, providing strict double evaluation. Together with environmental parameter macros
named accordingly, such a scheme would readily support all five options described above
and allow programmers to indicate easily and unambiguously the floating-point semantics
their programs require.

Must language support for extended precision be so complicated? On single/double
systems, four of the five options listed above coincide, and there is no need to differentiate
fast and exact width types. Extended-based systems, however, pose difficult choices: they
support neither pure double precision nor pure extended precision computation as efficiently
as a mixture of the two, and different programs call for different mixtures. Moreover, the
choice of when to use extended precision should not be left to compiler writers, who are
often tempted by benchmarks (and sometimes told outright by numerical analysts) to regard
floating-point arithmetic as "inherently inexact" and therefore neither deserving nor capable
of the predictability of integer arithmetic. Instead, the choice must be presented to
programmers, and they will require languages capable of expressing their selection.

Conclusion

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 62/64

The foregoing remarks are not intended to disparage extended-based systems but to
expose several fallacies, the first being that all IEEE 754 systems must deliver identical
results for the same program. We have focused on differences between extended-based
systems and single/double systems, but there are further differences among systems within
each of these families. For example, some single/double systems provide a single
instruction to multiply two numbers and add a third with just one final rounding. This
operation, called a fused multiply-add, can cause the same program to produce different
results across different single/double systems, and, like extended precision, it can even
cause the same program to produce different results on the same system depending on
whether and when it is used. (A fused multiply-add can also foil the splitting process of
Theorem 6, although it can be used in a non-portable way to perform multiple precision
multiplication without the need for splitting.) Even though the IEEE standard didn't anticipate
such an operation, it nevertheless conforms: the intermediate product is delivered to a
"destination" beyond the user's control that is wide enough to hold it exactly, and the final
sum is rounded correctly to fit its single or double precision destination.

The idea that IEEE 754 prescribes precisely the result a given program must deliver is
nonetheless appealing. Many programmers like to believe that they can understand the
behavior of a program and prove that it will work correctly without reference to the compiler
that compiles it or the computer that runs it. In many ways, supporting this belief is a
worthwhile goal for the designers of computer systems and programming languages.
Unfortunately, when it comes to floating-point arithmetic, the goal is virtually impossible to
achieve. The authors of the IEEE standards knew that, and they didn't attempt to achieve it.
As a result, despite nearly universal conformance to (most of) the IEEE 754 standard
throughout the computer industry, programmers of portable software must continue to cope
with unpredictable floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need programming
languages that make floating-point arithmetic predictable. The C99 standard improves
predictability to some degree at the expense of requiring programmers to write multiple
versions of their programs, one for each FLT_EVAL_METHOD. Whether future languages will
choose instead to allow programmers to write a single program with syntax that
unambiguously expresses the extent to which it depends on IEEE 754 semantics remains to
be seen. Existing extended-based systems threaten that prospect by tempting us to assume
that the compiler and the hardware can know better than the programmer how a
computation should be performed on a given system. That assumption is the second fallacy:
the accuracy required in a computed result depends not on the machine that produces it but
only on the conclusions that will be drawn from it, and of the programmer, the compiler, and
the hardware, at best only the programmer can know what those conclusions may be.

1 Examples of other representations are floating slash and signed logarithm [Matula and Kornerup 1985;
Swartzlander and Alexopoulos 1975].

2 This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa.

3 This assumes the usual arrangement where the exponent is stored to the left of the significand.

4 Unless the number z is larger than +1 or smaller than . Numbers which are out of range in this fashion
will not be considered until further notice.

5 Let z' be the floating-point number that approximates z. Then d.d...d - (z/ e) p-1 is equivalent to z'-z

/ulp(z'). A more accurate formula for measuring error is z'-z /ulp(z). - Ed.

6 700, not 70. Since .1 - .0292 = .0708, the error in terms of ulp(0.0292) is 708 ulps. - Ed.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 63/64

7 Although the expression (x - y)(x + y) does not cause a catastrophic cancellation, it is slightly less accurate than
x2 - y2 if or . In this case, (x - y)(x + y) has three rounding errors, but x2 - y2 has only two since the
rounding error committed when computing the smaller of x2 and y2 does not affect the final subtraction.

8 Also commonly referred to as correctly rounded. - Ed.

9 When n = 845, xn= 9.45, xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45. Therefore, xn = x845 for n > 845.

10 Notice that in binary, q cannot equal . - Ed.

11 Left as an exercise to the reader: extend the proof to bases other than 2. - Ed.

12 This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes this idea to Konrad Zuse.
 13 According to Kahan, extended precision has 64 bits of significand because that was the widest precision across which carry propagation could

be done on the Intel 8087 without increasing the cycle time [Kahan 1988].
 14 Some arguments against including inner product as one of the basic operations are presented by Kahan and

LeBlanc [1985].

15 Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product per clock cycle. The additionally
needed hardware compares to the multiplier array needed anyway for that speed.

 16 CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing transcendental functions that uses mostly shifts
and adds (i.e., very few multiplications and divisions) [Walther 1971]. It is the method additionally needed hardware compares to the multiplier array
needed anyway for that speed. d used on both the Intel 8087 and the Motorola 68881.

 17 Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to , it is possible to
change the default (see Rounding Modes)

18 They are called subnormal in 854, denormal in 754.

19 This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow often run noticeably slower on
hardware that uses software traps.

 20 No invalid exception is raised unless a "trapping" NaN is involved in the operation. See section 6.2 of IEEE
Std 754-1985. - Ed.

21 may be greater than if both x and y are negative. - Ed.

22 It can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the underflow threshold ,

then , and so may not overflow, since in all IEEE precisions, -emin < emax.

23 This is probably because designers like "orthogonal" instruction sets, where the precisions of a floating-point
instruction are independent of the actual operation. Making a special case for multiplication destroys this
orthogonality.

24 This assumes the common convention that 3.0 is a single-precision constant, while 3.0D0 is a double precision
constant.

25 The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this restriction is removed, then
letting f be the identically 0 function gives 0 as a possible value for lim x 0 f(x)g(x), and so 00 would have to be
defined to be a NaN.

26 In the case of 00, plausibility arguments can be made, but the convincing argument is found in "Concrete Mathematics" by Graham, Knuth and

Patashnik, and argues that 00 = 1 for the binomial theorem to work. - Ed.
 27 Unless the rounding mode is round toward - , in which case x - x = -0.

10/14/2018 What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html 64/64

28 The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in that they use the
inexpensive jump to subroutine call rather than the slower CALLS and CALLG instructions.

29 The difficulty with presubstitution is that it requires either direct hardware implementation, or continuable
floating-point traps if implemented in software. - Ed.

30 In this informal proof, assume that = 2 so that multiplication by 4 is exact and doesn't require a i.

31 This is the sum if adding w does not generate carry out. Additional argument is needed for the special case
where adding w does generate carry out. - Ed.

32 Rounding gives kx + w k - r k only if (kx + w k) keeps the form of kx. - Ed.

Sun Microsystems, Inc.
 Copyright information. All rights reserved.

 Feedback

Library | Contents | Previous | Next | Index

http://www.sun.com/
https://docs.oracle.com/cd/E19957-01/806-3568/PRN.html
http://www.sun.com/cgi-bin/comment-form.pl
https://docs.oracle.com/index.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncgTOC.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_x86.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_compliance.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncgIX.html

