
CS3310
Fourth Assignment (a3)

Report

Brandon Rodriguez
11-14-17

Preface

First off, a working, compiled jar of the assignment can be found in the root directory, called “a3.jar”.
To run this, open up a terminal, navigate to the directory, and type “java -jar a3.jar”. The rest should be
self-explanatory.

To find the source code of the assignment, navigate from the assignment’s root folder to
“root/a3/src/edu/wmich/cs3310/a3”. A majority of the code is located within the controller.java class
and the “DataStructures” subfolder.

Used libraries are included in the “root/a3/lib/” folder.

JavaDocs can be found at “root/Documents/JavaDocs/index.html”, as well as within the project dist
folder.

Runtime output logs can be located at “root/Documents/RuntimeOutput/”.

Program was created using JetBrain’s “Intellij” IDE.

If not familiar with Intellij:

Should the jar file not execute, you should be able to load it into intellij and get the same results. When
first opening the project, use “Import Project” through intellij’s splash screen. Then select “Create
project from existing sources”.

If intellij doesn’t automatically do it for you, make sure to set the “src” directory as the “Sources Root”,
and the “tests” directory as the “Test Sources Root”. You may also need to load in junit, which should
be provided within the lib folder.

You may also need to “Edit Configurations” and set Main as an application to launch from. But after
that, it should work. Just run the program with the green arrow button and it should launch.

Problem Statement

This program focuses on implementation of the following binary tree data structures:
• Standard Binary Tree (node-based)
• Array-based Binary Tree
• Binary Search Tree
• Min Heap
• Max Heap

Program Description

A file is read in at the start of program. This file is a list of last name, first name pairs separated by tabs.
The user will be prompted to enter a first and last name to search for.

The program then builds three different trees based on this input file. Each one is correspondingly
searched and various data values are output.

The two heaps each do a breadth-first search and then a depth-first search. The binary search tree just
does a normal search tree search. At the professor’s request, breadth-first searches are done entirely by
queue linked lists. Depth-first searches are done entirely by stack linked lists.

Note that the depth-first search (and possibly breadth-first? Not sure on that) could be handled far
better with a standard tree traversal, as this would only require a space of O(n), as opposed to the
current implementation that has a space of O(3n + overhead requirements for two stacks).

Tables of Observed Time Complexities
Note: Format is in milliseconds.

Full Tree
Creation

Min Heap
Breadth

Min Heap
Depth

Max Heap
Breadth

Max Heap
Depth

Search Tree
Search

0052 1 04 01 00 00 00 00

0052 2 04 01 00 00 00 00

0052 3 04 01 00 00 00 00

0500 1 19 02 01 00 00 00

0500 2 18 02 01 00 00 00

0500 3 20 02 00 00 01 00

1000 1 26 03 01 00 01 00

1000 2 26 03 01 02 00 00

1000 3 27 02 02 01 00 00

5000 1 56 03 02 02 02 00

5000 2 53 04 02 02 01 00

5000 3 53 03 02 03 01 00

Min Heap
Breadth

Min Heap
Depth

Max Heap
Breadth

Max Heap
Depth

Search Tree
Search

0052 Avg 01 00 00 00 00

0500 Avg 02 01 00 00 00

1000 Avg 03 01 01 00 00

5000 Avg 03 02 02 01 00

0052 Avg 0500 Avg 1000 Avg 5000 Avg
0

0.5

1

1.5

2

2.5

3

3.5

Average Search Times

Min Heap Breadth

Min Heap Depth

Max Heap Breadth

Max Heap Depth

Search Tree Search

Number of Names

M
ill

is
e

co
n

d
s

Theoretical Expected Times

Node-Based Min Heap Array-Based Max
Heap

Binary Search Tree

Node Insertion O(h) which should
equate to O(logn).

O(h) which should
equate to O(logn).

O(h) which may be as
bad as O(n), depending

on data.

Organize/Heapify O(h) O(h) O(1) (done via
insertion)

Traverse Tree Height O(h) O(h) O(h)

Full Traversal O(n) O(n) O(n)

Standard Search --- --- O(h)

Breadth-First Search O(n) O(n) --

Depth-First Search O(n) O(n) --

Space O(n) O(n) O(n)

Space When Searching O(3n) O(3n) O(n)

Concluding Analysis

Time Complexities

Overall, it appears that the depth-first searches were superior to breadth-first searches. Due to a small
sample size, it’s possible that it’s due to luck, and I just happened to pick nodes that favored depth-first
searching.

The array-based implementation also seemed to perform far better than the node-based implementation.
I’m not sure if trees will always behave this way or if I might have had subpar code for the node-based
tree, due to being my first attempt at writing a tree structure. At least theoretically, I can think of no
reason why the implicit would perform better, as any point where the explicit needs to traverse the tree,
the implicit should theoretically be visiting the same number of nodes.

This is further muddled by the fact that one was a min-heap and one was a max-heap, so it’s also
possible that the nodes I picked simply favored a max-heap over a min-heap.

Regardless, the binary search tree blew both of them out of the water with the current data sets used.
Even with larger datasets, it is unlikely that the search tree will perform worse, as it would be
incredibly rare (even if still possible) that the tree ends up with a height of n. Obviously, this can be
resolved if the search tree were transformed into a height-balanced search tree.

With the current problem description, it actually makes no sense to ever use a heap of any kind over a
search tree. At no point is a node ever removed/deleted, which would be when heaps shine.

Space Complexities

Upon attempting to read in 10,000 names or more, the program would crash and I’d get a
stackOverflow error. This is almost certainly due to the requested implementation of the depth/breadth
searches. In particular, the depth-first search is extremely space-inefficient, as in reality, it should be a
simple tree traversal.

Instead, it uses two separate stacks for the search. The first stack holds all tree nodes, in proper order,
until they can be used in comparison for the actual search. The second stack is used exclusively to keep
track of which nodes still need their children added to the first stack.

I suppose this could be improved somewhat, by iterating through the first stack as it’s pushed to, thus
keeping it’s size closer to O(1) than O(2). But even then, the stacks should just be put away and
traversal used instead.

Similar logic was used for the breadth-first search, if only for consistency.

