CS3310
Third Assignment (a2)
Report

Brandon Rodriguez
10-27-17

Preface

First off, a working, compiled jar of the assignment can be found in the root directory, called “a2.jar”.
To run this, open up a terminal, navigate to the directory, and type “java -jar a2.jar”. The rest should be
self-explanatory.

To find the source code of the assignment, navigate from the assignment’s root folder to
“root/a2/src/edu/wmich/cs3310/a2”. A majority of the code is located within the controller.java class
and the “DataStructures” subfolder.

Used libraries are included in the “root/a2/lib/” folder.

JavaDocs can be found at “root/Documents/JavaDocs/index.html”, as well as within the project dist
folder.

Runtime output logs can be located at “root/Documents/RuntimeOutput/”.

Program was created using JetBrain’s “Intellij” IDE.

If not familiar with Intellij:

Should the jar file not execute, you should be able to load it into intellij and get the same results. When
first opening the project, use “Import Project” through intellij’s splash screen. Then select “Create
project from existing sources”.

If intellij doesn’t automatically do it for you, make sure to set the “src” directory as the “Sources Root”,
and the “tests” directory as the “Test Sources Root”. You may also need to load in junit, which should
be provided within the lib folder.

You may also need to “Edit Configurations” and set Main as an application to launch from. But after
that, it should work. Just run the program with the green arrow button and it should launch.

Problem Statement

This assignment focus on the comparison of various basic sorts against eachother, both in linked list
and array form. Given sorts are “Bubble”, “Selection”, “Merge”, and “Binary Insertion”. For both
completeness and ease of programming the Binary Insertion, I have done a standard Insertion sort too.

Program Description

Due to no restrictions on linked list implementation, this uses a doubly linked list with a node that can
store both chars and ints. The chars are always used and the ints are only used if the user opts to show
stability of sorting.

At startup, all user prompts are displayed, including number of random characters to generate and
given user “name” to use for sorting.

After user input is given, the randomly generated character is created and then used as-is for all sort
types.

In regards to sorting itself, it is done alphabetically with one modification- The given user’s ‘name’
input is parsed, and all characters found within get priority over the standard alphabet ordering. Any
duplicate characters within the name are ignored.

Once all sorting methods complete, the given output and time information is displayed.
Random character generation of 0 or less makes the program self-terminate, as there is nothing to sort.

Name input that includes numeric characters will add them to dictionary appropriately, but they’ll
never be used as random character gen does not create numeric characters.

Algorithm Descriptions

Bubble Sort

Standard bubble sort, modified to have a boolean that keeps track of if it has been sorted during the
previous loop. If the boolean stays false through a full loop, then all remaining values are in the proper
order and the sort can end. Otherwise, it acts as a standard bubblesort and compares all remaining
values.

This allows the loop to have a theoretical best case of O(n) if sorting data that’s already properly
ordered. It will travel through all n values, the boolean will stay false, and then it will exit.

Initialize sortedBool to true
Initialize maxIndex to number of characters to sort
Initialize index to 0
while sortedBool is true
set sortedBool to false
while index is less than maxIndex
if index and (index + 1) are out of order
swap values
set sortedBool to true
endif
increment index
set index back to 0
decriment maxIndex
endwhile

For linked lists, it simply help a “maxNode” instead maxIndex and compared current node to
current.next.

Selection Sort

Standard selection sort. Loop through all unsorted values and find highest one. Then set the last
“unsorted” index to the found value. Repeat, slowly filling the end of data structure with sorted values
until all are found.

Initialize selectedIndex to O
Initialize lastValueSorted to (characters — 1)
while lastValueSorted is greater than 0
loop from 0™ index to lastValueSorted index
compare currentIndex to selectedIndex
if currentIndex has higher value

set selectedIndex to currentIndex
endif
endloop
set lastValueSorted to value at selectedIndex
set selectedIndex back to 0
decriment lastValueSorted
endwhile

For linked lists, it simply held “highestNode” instead of a “lastValueSorted” index, and then compared
current node to a “selectedNode”.

Merge Sort

Standard merge sort. Recursively divide data until down to base case of one item. Then merge back
together, in order.

recursiveDivide:

If low index is same as high index
Back out of recursion
endif

Call recursiveDivide on left half
Call recursiveDivide on right half
Call mergeHalves

mergeHalves:
Duplicate values of array into secondary array

loop from lowerIndex until upperIndex

if leftHolder > middleIndex
set origArray[index] to secondArray[leftHolder]
increment leftHolder

else if rightHolder > upperIndex
set origArray[index] to secondArray[rightHolder]
increment rightHolder

else if secondArray[leftHolder] is smaller than secondArray[rightHolder]
set origArray[index] to secondArray[leftHolder]
increment leftHolder

else
set origArray[index] to secondArray[rightHolder]
increment rightHolder

endif

endloop

For linked lists, had to hold the appropriate “index” values seperate from the list. Then, when the index
of a given node needed to be used, would have to step through the list equal to the index number.

In all honesty, I’m surprised this had as good of time as it did, given how it would have to frequently
step through. It could also probably be improved by having a “total list size” tracker. Then, if the
desired index was greater than half the list size, it would step through starting from end of list, not start.
Obviously, the amount to step would need to be adjusted as well.

Insertion Sort

Mostly-standard insertion sort. All values at start of data are sorted. For each loop, grab the “next”
value and compare. Progressively bump this new value towards the start of list until it’s in the proper
location.

loop from 0 to last index
save index as maxIndex
while index is greater than (index + 1)
swap index and index + 1 value
decriment index
endwhile
set index to back to maxIndex
endloop

The linked list was handled essentially the same. Just instead of indexes, it used nodes.

Binary Insertion Sort

This one essentially was the same as above until it found an unsorted value (index < index+ 1). Then it
would turn into a standard binary search to place the value at the correct spot. As with merge sort, the
linked list implementation had to keep track of indexes outside the list, and then step through to find
the appropriate node location.

For psuedocode, see above and also reference any generic binary search psudeo code.

Tables of Observed Time Complexities

Note: Format is of (Minute : Second : Millisecond)
If no minute values are present, then minute column is omitted.

Char # | Bubble | Bubble | Selectio | Selectio| Merge = Merge | Inserti | Inserti | Binary | Binary
Sort Sort | n Sort | n Sort | Sort Sort |on Sort | on Sort | Inserti | Inserti

Array | List | Array | List | Array | List | Array | List |on Sort| on Sort

Array | List

5 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000
10 00:000 | 00:001 | 00:000 | 00:000 | 00:000 | 00:000 | 00:000 | 00:001 | 00:000 | 00:000
50 00:002 | 00:001 | 00:001 | 00:000 | 00:001 | 00:001 | 00:000 | 00:001 | 00:000 | 00:001
100 | 00:004 | 00:002 | 00:002 | 00:003 | 00:000 | 00:002 | 00:001 | 00:002 | 00:001 | 00:002
500 | 00:025 | 00:031 | 00:018 | 00:021 | 00:002 | 00:008 | 00:011 | 00:036 | 00:002 | 00:005
1000 | 00:064 | 00:064 | 00:031 | 00:049 | 00:002 | 00:007 | 00:018 | 00:044 | 00:003 | 00:009
5000 | 00:350 | 00:315 | 00:412 | 00:507 | 00:014 | 00:057 | 00:243 | 00:289 | 00:034 | 00:133
10000 | 01:313 | 01:134 | 01:564 | 01:746 | 00:054 | 00:275 | 00:841 | 00:866 | 00:126 | 00:300
15000 | 02:785 | 02:388 | 03:551 | 03:881 | 00:102 | 00:577 | 01:887 | 01:876 | 00:281 | 00:570
20000 | 04:810 | 04:186 | 06:268 | 06:923 | 00:160 | 00:873 | 03:365 | 03:349 | 00:342 | 00:881
25000 | 07:446 | 06:555 | 09:803 | 10:863 | 00:256 | 01:383 | 05:245 | 05:218 | 00:407 | 01:380
30000 | 10:667 | 09:512 | 14:770 | 14:693 | 00:312 | 02:108 | 07:526 | 07:562 | 00:456 | 02:210

Best of Each Sort Vs Overall

0
0
0
0 .
= Bubble Sort List
0 == Selection Sort Array
é 0 Merge Sort Array
.g: 0 = |NSertion Sort Array
0 == Binary Insertion Sort Array
0 EE Overall Time
0
O O O & ©® ©® © & & & &
AV N P O OGN OO R O OO
R N S \90 \(/,30 q/QQ q(/oo %QQ
Number of Chars
Char # Bubble Sort | Selection @ Merge Sort Insertion Binary Overall
List Sort Array Array Sort Array @ Insertion Time
Sort Array
5 00:00.000 00:00.000 00:00.000 00:00.000 00:00.000 00:00.000
10 00:00.001 00:00.000 00:00.000 00:00.000 00:00.000 00:00.002
50 00:00.001 00:00.001 00:00.001 00:00.000 00:00.000 00:00.008
100 00:00.002 00:00.002 00:00.000 00:00.001 00:00.001 00:00.018
500 00:00.031 00:00.018 00:00.002 00:00.011 00:00.002 00:00.159
1000 00:00.064 00:00.031 00:00.002 00:00.018 00:00.003 00:00.291
5000 00:00.315 00:00.412 00:00.014 00:00.243 00:00.034 00:02.354
10000 00:01.134 00:01.564 00:00.054 00:00.841 00:00.126 00:08.219
15000 00:02.388 00:03.551 00:00.102 00:01.887 00:00.281 00:17.898
20000 00:04.186 00:06.268 00:00.160 00:03.365 00:00.342 00:31.157
25000 00:06.555 00:09.803 00:00.256 00:05.245 00:00.407 00:48.556
30000 00:09.512 00:14.770 00:00.312 00:07.526 00:00.456 01:09.934

Seconds

12

10

Bubble Sort

Number of Chars

= Bubble Sort Array
== Bubble Sort List

Char # Bubble Sort Array Bubble Sort List
5 00.000 00.000
10 00.000 00.001
50 00.002 00.001

100 00.004 00.002

500 00.025 00.031
1000 00.064 00.064
5000 00.350 00.315
10000 01.313 01.134
15000 02.785 02.388
20000 04.810 04.186
25000 07.446 06.555
30000 10.667 09.512

Selection Sort

16
14
12
10
o 8
'g 5 = Selection Sort Array
S == Selection Sort List
N4
2
0
O O P '&0 %00 \900 %QQQ '&000 \/(0000 (9000 ,ﬁo@g QQQ
Number of Chars
Char # Selection Sort Array Selection Sort List
5 00.000 00.000
10 00.000 00.000
50 00.001 00.000
100 00.002 00.003
500 00.018 00.021
1000 00.031 00.049
5000 00.412 00.507
10000 01.564 01.746
15000 03.551 03.881
20000 06.268 06.923
25000 09.803 10.863
30000 14.770 14.693

Seconds

2.5

15

0.5

Merge Sort

Number of Chars

= |\lerge Sort Array
= Merge Sort List

Char # Merge Sort Array Merge Sort List
5 00.000 00.000
10 00.000 00.000
50 00.001 00.001
100 00.000 00.002
500 00.002 00.008
1000 00.002 00.007
5000 00.014 00.057
10000 00.054 00.275
15000 00.102 00.577
20000 00.160 00.873
25000 00.256 01.383
30000 00.312 02.108

Seconds

S P N W b 01O N @©

Insertion Sort

Number of Chars

= |nsertion Sort Array
= |Nsertion Sort List

Char # Insertion Sort Array Insertion Sort List
5 00.000 00.000
10 00.000 00.001
50 00.000 00.001
100 00.001 00.002
500 00.011 00.036
1000 00.018 00.044
5000 00.243 00.289
10000 00.841 00.866
15000 01.887 01.876
20000 03.365 03.349
25000 05.245 05.218
30000 07.526 07.562

Seconds

Binary Insertion Sort
2.5

15

1 == Binary Insertion Sort Array
== Binary Insertion Sort List

0.5

Number of Chars

Char # Binary Insertion Sort Array Binary Insertion Sort List
5 00.000 00.000
10 00.000 00.000
50 00.000 00.001

100 00.001 00.002

500 00.002 00.005
1000 00.003 00.009
5000 00.034 00.133
10000 00.126 00.300
15000 00.281 00.570
20000 00.342 00.881
25000 00.407 01.380
30000 00.456 02.210

Concluding Analysis

For the most part, the data matches what I expected.

Time Complexities

Due to my modification, bubble sort was not the worst sort, and actually should have a best-case time
of O(n). As such, selection sort ended up being the worst sort overall. Insertion sort ended up being just
a tad better than bubble sort.

Due to my modification of bubble sort, I feel like it and insertion should be the same time, as one just
pushes elements forward and the other pushes backward. But they both should take O(n) time on a fully
sorted list of elements and O(n/2) on a list of reverse-order elements. I suppose it has a small enough
margin of error that the difference may due to outside factors.

As predicted, merge sort was the best out of all of them, at a constant time of O(nlogn).

Surpisingly though, binary insertion sort was a close second to merge. I thought that adding a binary
search to insertion sort wouldn’t change the time complexity. For arrays, the binary search would stop
it from having to iterate through n values to find the correct spot, but then it would still have to move
all elements over to free up the desired location, adding back a O(n) time.

For lists, the binary search would still have to repeatedly step through the list in order to actually find

the node location, which again, should result in O(n) time being added back. So in all honesty, I’'m not
sure how the binary insertion sort was actually an improvement over the standard insertion sort, but it

definitely shows an improvement none the less.

For the two faster sorts (merge and binary insertion), linked list was noticably slower, which makes
sense due to linked lists being unable to take advantage of indexes. For all other sorts, the linked list
was either similar or very slightly faster than the array. This is due to not having to iterate through the
list for a given node value and simultaneously being able to take advantage of the O(1) time to insert or
delete an already found node.

Space Complexities

All used sorts should have time of O(n) except for merge sort, as they all, at most, add a single
temporary variable to hold a value while doing swaps.

Merge sort is the exception. For arrays, it duplicates the given array on merge, ultimately resulting in a
max of O(2n) space. This obviously simplifies to O(n).

For linked lists, it copies each half of the given list, as this was the easiest way to handle splitting the
list without having to use even more index pointers. When possible, I put priority on avoiding index
pointers, even if it was at the cost of (mostly negligible) additional space.

Summary

Overall, this program really doesn’t do a whole lot, other than check that we can implement various
sorts, and then give data on how well they performed. Obviously, expanding into larger amounts of
characters will give increasingly accurate representation of how well each sort performs.

However, even with the current data, I think it’s safe to say that bubble, selection, and insertion sorts
tended closer to O(n/\2) time. Meanwhile, binary insertion and merge sort both appeared to be near
O(nlogn) time.

