CS 3310 Fall 2017 A2 Linear Data Structures

Assignment 2
Linear Data Structures

Release Time Due Date

10/02/17 10/15/17

Objectives

* Comprehend and understand the mechanism of linked lists in depth
* Creating stacks and queues based on linked lists
* Use stacks and queues to solve practical problems

Problem Specification

Write a program to solve the following problem. Note that in this assignment you are NOT
allowed to use Java (or other languages) Collections API such as LinkedList, ArrayList, List,
Stack, Queue, etc.

1) Create Class CharNode with an attribute “char myData”, and create Class CharList that has at
least two methods insert() and delete().

2) Create Class CharStack that has at least two methods push() and pop(). This class must be
implemented using CharList.

3) Create Class CharQueue that has at least two methods enqueue() and dequeue(). This class
must be implemented using CharList.

4) Create Class StackCheckBalancedParentheses with an attribute “String text”. This class
implements a method called CheckBalancedParentheses() to check whether “(“ is matched with
‘Y in text. The implementation of CheckBalancedParentheses() should be based on CharStack.
For example, “sdb(erlj)((djre)lejr)” is balanced but “4+(5*4))” is unbalanced. The return value of
CheckBalancedParentheses() is an integer that indicates the degree of unbalancing of text. For
example,

a. CheckBalancedParentheses (“sdb(erlj)((djre)lejr)”) = 0 because the string is balanced
b. CheckBalancedParentheses (“4+(5*4))”) = 1 because there is an extra ‘).

c. CheckBalancedParentheses (“ere)(jre”) = 2 because there are extra ‘) and ‘).

d. CheckBalancedParentheses (“((())((") = 3 because there are extra “(((“.

e. CheckBalancedParentheses (“)((())((") = 4 because there are extra “)((("“.

1

CS 3310 Fall 2017 A2 Linear Data Structures

5) Create Class QueueCheckBalancedParentheses with an attribute “String text”. This should
implement a method called CheckBalancedParentheses() to check every “(“ is matched with)”
in text. The implementation of CheckBalancedParentheses() should be based on CharQueue.
(Hint: you can use two queues to emulate a stack.)

6) Create Class StackQueueDemo that takes a user string input (strings will be input from the file
“balancedParenChecklinputs.txt” which will have various strings separated by blank lines). The
main method should call CheckBalancedParentheses (') of both
StackCheckBalancedParentheses and QueueCheckBalancedParentheses classes, and make
sure their outputs are consistent. No static members unless absolutely necessary (and if you use
them, your report should justify their use)

7) Testing: test your program with several strings, design your test cases so that you cover most (if
not all) cases of user-input (this implies your application should be robust and fail-safe as much
reasonably as possible).

Design Requirements

Code Documentation

For this assignment, you must include documentation for your code as generated by JavaDoc. You
should have JavaDoc comments for every class, constructor, and method. By default, JavaDoc should
output html documentation to a subfolder within your project (/dist/javadoc). Make sure this folder is
included when you zip your files for submission. You do not need to submit a hard copy of this
documentation.

Hint: http://stackoverflow.com/questions/4468669/how-to-generate-javadoc-html-in-eclipse

Coding Standards

You must adhere to all conventions in the CS 3310 Java coding standard. This includes the use of
white spaces for readability and the use of comments to explain the meaning of various methods and
attributes. Be sure to follow the conventions for naming classes, variables, method parameters and
methods.

Testing

Make sure you test your application with several different values, to make sure it works.

Example input file: balancedParenChecklInputs.txt
“sdb(erlj)((djre)lejr)”

“4+(5*4))”

CS 3310 Fall 2017 A2 Linear Data Structures

“ere)(jre”

“UONC
“YAONC

Assignment Submission

* Generate a .zip file that contains all your files, including:

= Source code files

* Including any input or output files

= Documentation of your code — e.g. using Javadoc if using Java

= A brief report (in a pdf file) on your observations of comparing theoretical vs empirically
observed time complexities. Note this report will include (a) a brief description of
problem statement(s), (b) algorithms descriptions (if these are standard, commonly
known algorithms, then just mention their names along with customization to your
specific solution(s), otherwise give the pseudo-code of your algorithms, (c) theoretically
derived complexities of the algorithms used in your code, (d) table(s) of the observed
time complexities, and (e) plots comparing theoretical vs. empirical along with your
observations (e.g. do theoretical agree with your implementation, why? Why not?).

Don’t forget to follow the naming convention specified for submitting assignments

