CS3310
Second Assignment (al)
Report

Brandon Rodriguez
10-13-17

Preface

First off, a working, compiled jar of the assignment can be found in the root directory, called “al.jar”.
To run this, open up a terminal, navigate to the directory, and type “java -jar al.jar”. The rest should be
self-explanatory.

To find the source code of the assignment, navigate from the assignment’s root folder to
“root/al/src/edu/wmich/cs3310/a1”. A majority of the code is located within the “DataStructures”
subfolder.

Used libraries are included in the “root/al/lib/” folder.

JavaDocs can be found at “root/Documents/JavaDocs/index.html”, as well as within the project dist
folder.

Runtime output logs can be located at “root/Documents/RuntimeOutput/”. The input for this was read
directly in from the “balancedParenChecklInputs.txt” file, which is also saved within
“root/Documents/”.

Program was created using JetBrain’s “Intellij” IDE.

If not familiar with Intellij:

Should the jar file not execute, you should be able to load it into intellij and get the same results. When
first opening the project, use “Import Project” through intellij’s splash screen. Then select “Create
project from existing sources”.

If intellij doesn’t automatically do it for you, make sure to set the “src” directory as the “Sources Root”,
and the “tests” directory as the “Test Sources Root”. You may also need to load in junit, which should
be provided within the lib folder.

You may also need to “Edit Configurations” and set Main as an application to launch from. But after
that, it should work. Just run the program with the green arrow button and it should launch.

Problem Statement

In an attempt to examine various data structures and efficiency of various algorithms, this assignment
was created. Specifically, it focuses on linked lists and comparing the stack implementation to the
queue implementation.

The node is of “char” type, and the “main functionality” is to read in a string (either from user input or
file read in) and determine if the parentheses within said string are properly balanced.

Program Description

Program is overall rather simple. It starts by prompting user to type 1, 2, or 3. Input 1 prompts user to
enter system path for file read in. 2 prompts user to enter string to parse. 3 exits program.

If the file option is selected, then the program reads the file and separates it line by line, sending each
individual line to be processed accordingly. If the user enters input, then the input is treated as a single
line and sent to be processed.

In either case, the given line is “processed” by first being sent to the stack linked list class, then the
queue linked list class. They do the appropriate functions to separate the string character by character,
save them within the list, and then iterate through all nodes in the list and check for parentheses.
Processing times are recorded and output for the user.

Once it finishes, the program resets and the user is once again prompted to type 1, 2, or 3.

The core functionality of this program is in the implementation of the linked lists. Due to habit from
previous projects, I initially went with a doubly-linked linked list. This allows both stacks and queues
to have a running time of O(1), due to saving the head and tail nodes.

However, after implementing time calculation for the project, I realized it was probably implied that we
should be using a singly-linked list instead, so that there would be actual variation in times. As such, I
added another method to queues that iterates through the list as if the tail node was not saved. However,
this method does still properly update the tail node for list consistency and integrity.

On that note, integrity of all lists was mostly enforced via unit testing. I attempted to test all methods
using values of n, n+1, and n+2 list size where n was 0. By inductive reasoning, the list logic should
function for all further n+1 list sizes, where n includes any realistically valid size. When it seemed

appropriate, I even went up to testing size n+3, so that I could ensure logic was solid even with a
middle node present.

Algorithm Descriptions

The used algorithms were standard implementation of a doubly-linked linked list. Stack pushed and
popped at the head node of the list. Queue queued to tail and dequeued from head. Insert and delete
were able to do such at any location in the list, but due to project specifications, were not actually used
outside of class unit tests.

It was stated in class that we “do not need to show algorithms for commonly used, standard
implementations.” A doubly-linked linked list is a fairly standard data structure and I didn’t do anything
special for my implementation. As such, I will only show a fairly generalized psuedo-code here, that
will roughly apply to insert/push/enqueue.

For any such method, it first creates a new node and saves the appropriate data to said node. The
method then checks if the list is empty. If so, both the head and tail nodes are set to the new node, and
it’s done. Otherwise, it travels to the appropriate location within the list (which varies, depending on
the method). The list then updates the new node’s next/previous pointers, as well as the next/previous
pointers of the surrounding nodes, if appropriate.

The only real difference between this and the removal methods is that no newNode is created, and the
selected node is returned after removal. Pointer updating and location finding still handles roughly
identically.

Psuedo-Code:
create newNode
if list is empty,
first and last pointer equal newNode
end method
else
go to location in list, which is O(1) time for all but insert
look at node immediately surrounding location
set these surrounding nodes to newNode’s next/previous pointers
if surrounding nodes are not null
also update next/previous pointers of surrounding nodes
else
set first/last node appropriately, as it means node is either at start or end of list
if method was insert, return true to indicate success

Tables of Observed Time Complexities

Note: Format is of (Minute : Second : Millisecond)
S Queue — Singly-Linked Simulated Queue

D Queue — Doubly-Linked Queue

Processing Time (in milliseconds)

Character Length Stack Time D Queue Time S Queue Time Total String Time
31 001 000 000 001
18 000 000 000 000
18 000 000 000 000
17 000 000 000 000
18 000 000 000 001
12 000 000 000 000
14 000 000 000 000
14 000 000 000 000
14 000 000 000 000
14 000 000 000 000
60 000 000 000 000
113 000 000 001 001
162 000 000 002 002
215 001 000 003 004
895 000 000 004 004
896 000 000 001 001
897 001 000 001 002
898 001 001 010 012
2870 001 001 009 011
2871 001 001 009 011
2872 001 001 036 039
5728 002 001 035 038
5729 002 001 035 038

11444 002 002 142 146
11444 001 001 142 144

Stack Vs D Queue

N w
N O w o1 A

g = D Queue Time
$ 15 = Stack Time
= 1
0.5 \
0
ES I N SN - R q‘,é\g {g}\m 03\(19 o o
Character Length
Character Length Stack Time D Queue Time
31 001 000
18 000 000
18 000 000
17 000 000
18 000 000
12 000 000
14 000 000
14 000 000
14 000 000
14 000 000
60 000 000
113 000 000
162 000 000
215 001 000
895 000 000
896 000 000
897 001 000
898 001 001
2870 001 001

001 001
001 001
002 001
002 001
002 002
001 001

Stack Vs S Queue

160
140
120
100
8 80
S = S Queue Time
E %0 = Stack Time
= 40
20
0 S
R RGPS rﬁ)@
Character Length
Character Length Stack Time S Queue Time
31 001 000
18 000 000
18 000 000
17 000 000
18 000 000
12 000 000
14 000 000
14 000 000
14 000 000
14 000 000
60 000 000
113 000 001
162 000 002
215 001 003
895 000 004
896 000 001
897 001 001
898 001 010
2870 001 009

001 009
001 036
002 035
002 035
002 142
001 142

D Queue Vs S Queue

160
140
120 r
100
8 80
S = S Queue Time
E 60 = D Queue Time
z 40
20
0 B
R RO & g P &Py
Character Length
Character Length D Queue Time S Queue Time
31 000 000
18 000 000
18 000 000
17 000 000
18 000 000
12 000 000
14 000 000
14 000 000
14 000 000
14 000 000
60 000 000
113 000 001
162 000 002
215 000 003
895 000 004
896 000 001
897 000 001
898 001 010
2870 001 009

001 009
001 036
001 035
001 035
002 142
001 142

Concluding Analysis

The data very closely matches what is expected.

Time for Acquiring a Node

A stack’s push and pop methods should always have roughly a O(1) access time, due to only needing
the head node.

In a doubly-linked linked list, a queue should always have roughly a O(1) access time, due to both the
head and tail nodes being saved.

In a singly-linked linked list, a queue’s dequeue will have roughly a O(1) access time, due to saving
the head node. However, to access the tail node when enqueueing, it needs to iterate through every
single node in the list, which significantly increases time to O(n).

This means that, when comparing the three with the same action, the singly linked list queue will
always have a higher time cost, once the list is more than just a few nodes long.

Time for Processing a Node by Checking Parens

Comparatively, the time to process a node by checking parens is expected to be always trivial to getting
the node.

This is because, once a node is acquired, it’s essentially just a simple if statement to check what the
data value is. The if statement simplifies to time of O(1) so the time for this can generally be ignored.
Acquiring a node will always be greater or equal.

Summary

Due to the above facts, this program is expected to generally run fairly quickly. It still needs to grab
each string, add each character to a list, then remove each character to check for parents. So ultimately,
it’s looking at a minimum of O(n), where n is the number of characters in the string.

However, a singly-linked list queue will also add an additional O(n) to the time cost, making that by far
the most expensive part of the program. Which matches up with the data, as everything else kept at
between 0 and 2 milliseconds to process the same data. Meanwhile, the singly-linked list queue was up
to 100 times longer to process, when it came to the larger strings.

Ultimately, if the program is only meant to process smaller strings (such as those initially provided in
the project description), then it doesn’t much matter which version of a linked list is used. However, it
looks like, as soon as the strings reach lengths of 10000+ characters, the cost difference starts becoming

noticeable, and would make a rather large impact if it had to handle large volumes of data, such as
thousands or millions of records at once.

Even at 5000+ characters, the cost difference arguably starts becoming noticeable, but it still seems
small enough that some may consider it insignificant.

