CS3310
First Assignment (a0)
Report

Brandon Rodriguez
09-27-17

Preface

First off, a working, compiled jar of the assignment can be found in the root directory, called “a0.jar”.
To run this, open up a terminal, navigate to the directory, and type “java -jar a0.jar”. The rest should be
self-explanatory.

To find the source code of the assignment, navigate from the assignment’s root folder to
“root/a0/src/com/CS3310/a0”. A majority of the code is located within the “Controller.java” class.

Used libraries are included in the “root/a0/lib/” folder.

JavaDocs can be found at “root/Documents/JavaDocs/index.html”.

Runtime output logs can be located at “root/Documents/RuntimeOutput/” and are organized by type of
input provided. The value “n” denotes the size of both array dimensions, which capped at 8000 because

my laptop started having memory heap errors for larger values. The value “m” denotes the number of
times a random character was changed.

Program was created using JetBrain’s “Intellij” IDE.

If not familiar with Intellij:

Should the jar file not execute, you should be able to load it into intellij and get the same results. When
first opening the project, use “Import Project” through intellij’s splash screen. Then select “Create
project from existing sources”.

If intellij doesn’t automatically do it for you, make sure to set the “src” directory as the “Sources Root”,
and the “tests” directory as the “Test Sources Root”. You may also need to load in junit, which should
be provided within the lib folder.

You may also need to “Edit Configurations” and set Main as an application to launch from. But after
that, it should work. Just run the program with the green arrow button and it should launch.

Problem Statement

In an attempt to examine various data structures and efficiency of various algorithms, this assignment
was created. Specifically, it focuses on comparing binary and linear searches within standard arrays.

This assignment uses unsorted arrays for linear searching and sorted arrays for binary searching. It
tracks time spent by milliseconds (although, with small values of n and m, the time is so trivial that it
could not be read) and prints out for user display.

Program Description

The program starts by prompting the user for an array dimension, which is used to create a (n x n) 2d
array. It then populates every spot in this array with a random lowercase ascii letter. Next, the program
creates a comparable array of sorted values (starting with ‘a’, ending with ‘z’) and displays time spent
for both.

The program also asks the user for a “name”, which honestly can be any arbitrary string of characters.
This value is used for the rest of the program as the string which searches are ran against.

The program feeds this name value in character by character, first to the linear search, then to the
binary search, outputting the index of each character when found. If the character is not found, then an
index of [-1, -1] is given instead.

The program also keeps track of which indexes have already been “found”, skipping over those to
account for potential repeating characters.

For the last part, the program prompts the user for an integer. The program then replaces a random
letter in the name with a new random character, and repeats this equal to the integer that was provided.
For ever replacement, the name is once again ran through the linear and binary searched. For this
section, individual “found indexes” are not printed out.

However, at the end of the character replacement loop, various stats are printed out, including things
like total and average times for each search. Again, for low values of n and m, these values are may be
so trivial that they can’t even be recorded in milliseconds, and thus print out as all 0’s. For more
meaningful data, use larger values of n and m.

Algorithm Descriptions

The used algorithms are mostly just standard linear and binary searches, with one modification: They
both had to be sensitive to previously-located values. As such, only the modified sections will be
described here.

Commonality

First off, I will say for both searches that they used a similar means of storing what values have already
been found. For each, there was an array of equivalent size and dimensions. This array also stored
characters in every index. However, instead of random characters, only two characters were stored
here.

The first character was an ‘o’, which was used to denote that the given index had not been “found” yet.
The second character was a ‘x’, which was used to denote that the given index had been “found”.

Upon a search match in either search, a check was done on the secondary array at the equivalent index.
If the char located there was an o, then the search was deemed valid. If it was an x, then the
linear/binary search ignored the “found” value and continued on as normal. Upon any matches, the
location at the secondary array was updated from ‘0’ to ‘x’.

This arrangement meant that all “valid or not” comparisons took exactly 1 time, as the index to check
was already known, and there is no need to look anywhere else. However, it also meant that the
program took about twice as much memory due to twice the storage needed for the additional arrays.

Psuedo-Code:
on search match,
if secondaryArray[foundIndex] equals ‘o’
then
secondaryArray[foundIndex] now equals ‘x’
exit loop and return foundIndex
else
ignore search match and continue search
end search match

Linear Search

The linear search really didn’t change too much from the above modifications. It just sometimes
ignored a given match and continued to the next value. (See above for psuedo-code.)

Binary Search

The binary search actually had to be decently modified to accommodate the changes. It ended up
getting two additional functions created for this very reason.

Essentially, upon a binary search match with a larger dataset, it becomes inefficient to “just ignore the
current value and continue the search as normal”.

Instead, once a match was found, the search would essentially stop. If the “found” value was valid, then
it just returned that. Otherwise, if the value had already been used, the search would enter two new
recursive loops- first to check the values directly left, then (if still no match) the values directly right.
These two recursive checks would continue until:
1. A valid match.
2. Aninvalid index was given, which meant that it was searching past the start/end of the array,
and thus a valid value would not be found in that direction.
3. A different character was found. Due to the array being pre-sorted, this also meant that a valid
value would not be found in that direction.

If, even after these new recursive functions, a match was still not found, then an index of [-1,-1] was
returned.

Psuedo-Code:
on search match:
if secondaryArray[foundIndex] equals ‘o’
then
secondaryArray[foundIndex] now equals ‘x’
exit loop and return foundIndex
else
stop binary search
check values to left where char still matches search
if found and secondaryArray[thatNewIndex] equals ‘o’
secondaryArray[thatNewIndex] now equals ‘x’
exit loop and return thatNewIndex
else
Try the same but with values to the right, instead
if match and secondaryArray[otherNewIndex] equals ‘o’

secondaryArray[otherNewIndex] now equals ‘x’
exit loop and return otherNewIndex
else
no matches found
return -1 index
end try
end then
end search match

Tables of Observed Time Complexities

Note: Format is of (Minute : Second : Millisecond)
Any values which read as 0 are marked as “=" for readability.

Linear (Unsorted) Search

Average Time Total Time Shortest Iteration | Longest Iteration
n: 0005, m: 0001 =:==:=== =:==:=== =:==:=== =:==:===
n: 0010, m: 0002 =:==:=== =:==:=== =:==:=== =:==:===
n: 0100, m: 0004 =:==:=== =:==:003 =:==:=== =:==:001
n: 1000, m: 0008 =:==:003 =.:==:027 =:==:001 =:==:008
n: 2000, m: 0016 =:==:009 =:00:157 =:==:003 =:==:043
n: 4000, m: 0032 =:==:038 =:01:217 =:==:012 =:==:159
n: 8000, m: 0064 =:==:162 =:10:397 =:==:137 =:==:275
n: 8000, m: 0128 =:==:159 =:20:471 =:==:137 =:==:268
n: 8000, m: 0256 =:==:159 =:40:178 =:==:135 =:==:277
n: 8000, m: 0512 =:==:160 1:22:283 =:==:135 =:==:261
n: 8000, m: 1024 =:==:160 2:44:178 =:==:136 =:==:207
Binary (Sorted) Search
Average Time Total Time Shortest Iteration | Longest Iteration
n: 0005, m: 0001 =:==:=== =:==:=== =:==:=== =:==:===
n: 0010, m: 0002 =:==:=== =:==:=== =:==:=== =:==:===
n: 0100, m: 0004 =:==:=== =:==:002 =:==:=== =:==:001
n: 1000, m: 0008 =:==:002 =:==:023 =:==;=== =:==:016
n: 2000, m: 0016 =:==:007 =:==:123 =:==:003 =:==:024
n: 4000, m: 0032 =:==:019 =:==:628 =:==:012 =:==:059
n: 8000, m: 0064 =:==:119 =:07:638 =:==:050 =:==:776
n: 8000, m: 0128 =:==:111 =:14:217 =:==:050 =:==:197
n: 8000, m: 0256 =:==:113 =:29:178 =:==:050 =.:==:187
n: 8000, m: 0512 =:==:119 1:01:424 =:==:050 =:==:207
n: 8000, m: 1024 =:==:118 2:01:797 =:==:050 =:==:207

Plots of Observations

Average Time

main-title

180

160

140

120 R

100
" 80
o 60 .
S 40 = | inear Search
ki 20 == Binary Search
s 0

,006\/ QQ&,QQ& & & .00%{1/,@@‘ ,o'j’b ,o'ﬁob ,@Q,@%V

<o~®‘ 050 0~& 0«6\ 06\ 0:& 06\ 050. 0500 Q«é\ 0&
FFFT PP LSS &
NN R SR R\ N\ O SRS
Run Type
Linear Search Binary Search

n: 0005, m: 0001 000 000
n: 0010, m: 0002 000 000
n: 0100, m: 0004 000 000
n: 1000, m: 0008 003 002
n: 2000, m: 0016 009 007
n: 4000, m: 0032 038 019
n: 8000, m: 0064 162 119
n: 8000, m: 0128 159 111
n: 8000, m: 0256 159 113
n: 8000, m: 0512 160 119
n: 8000, m: 1024 160 118

Minutes : Seconds : Milliseconds

Total Time

main-title
03:21:36
02:52:48
02:24.00
01:55:12
01.26:24
00:57:36 = |inear Search

00:28:48 == Binary Search
00:00:00

\Y qQ > o) © 1 3 > © \ ™
Q Q Q Q &y $o) © 3%) N V
S I FFPFPEFSE PP Y
‘O(Q' Q@' Q(Q' Qé\. 06\. 06\. Q@' Q@' Qé\. 06\. 06\.
PP

6-00 <\~Q é’o\/ o"\’ oq/ ov o(b o% o(b o% o%
Run Type
Linear Search Binary Search
n: 0005, m: 0001 0:00:000 0:00:000
n: 0010, m: 0002 0:00: 000 0:00:000
n: 0100, m: 0004 0:00:003 0:00:002
n: 1000, m: 0008 0:00:027 0:00:023
n: 2000, m: 0016 0:00: 157 0:00:123
n: 4000, m: 0032 0:01:217 0:00:628
n: 8000, m: 0064 0:10:397 0:07:638
n: 8000, m: 0128 0:20:471 0:14:217
n: 8000, m: 0256 0:40:178 0:29:178
n: 8000, m: 0512 1:22:283 1:01:424
n: 8000, m: 1024 2:44:178 2:01:797

Shortest Time

main-title

160

140

120

100

80
“ 60
S 40 = |_inear Search
§ 20 === Binary Search
s 0

.000&,00&.00& .000% ‘0& ‘0&%.@@‘ .0&. “3’@. "0‘\9&

%5{\.0*&'Q*@‘Q*@‘Q*(Q‘Qf(\'Q*@'Q*(Q'Q*@.Q*&.Q*@'
FEFFLFL LSS
NN O A O N N R\
Run Type
Linear Search Binary Search

n: 0005, m: 0001 000 000
n: 0010, m: 0002 000 000
n: 0100, m: 0004 000 000
n: 1000, m: 0008 001 000
n: 2000, m: 0016 003 003
n: 4000, m: 0032 012 012
n: 8000, m: 0064 137 050
n: 8000, m: 0128 137 050
n: 8000, m: 0256 135 050
n: 8000, m: 0512 135 050
n: 8000, m: 1024 136 050

Longest Time

main-title

900

800

700

600

500

400
(2]
e 300 _
S 200 | R — = |inear Search
ki 100 == Binary Search
s 0

.000&,00& .000& .000% ‘0& ‘0&%.@@‘ .Q@b. “3’@. "0‘\9&

%5{\’0*@'@@‘0*&‘%*@‘6}@0*@'050'050’05\\’0}(\'
FFPFP I L LS F S S S
NN O A O N N R\
Run Type
Linear Search Binary Search

n: 0005, m: 0001 000 000
n: 0010, m: 0002 000 000
n: 0100, m: 0004 001 001
n: 1000, m: 0008 008 016
n: 2000, m: 0016 043 024
n: 4000, m: 0032 159 059
n: 8000, m: 0064 275 776
n: 8000, m: 0128 268 197
n: 8000, m: 0256 277 187
n: 8000, m: 0512 261 207
n: 8000, m: 1024 207 207

Theoretical Complexity Graph

Operations

8

1000

8

8

g

8

Big-O Complexity

_~

100

—1)
—O{lgn)
=—n)
=——0{nlogn]
DHnt2)
—0{in]
—anl}

Concluding Analysis

Total Time Analysis

The expected theoretical times of various equations can be seen above, in the “Big-O” graph.

Linear search is expected to follow the line of O(n). Meanwhile, because the array is pre-sorted, binary
search is expected to follow the line of O(log n) [otherwise, it would follow O(n log n)]. To get the
best feel for if these are accurate, we would probably want to look at the total times.

The total time is the only value that changed significantly based on the number of searches to run (IE:
the number of characters replaced, or m). As expected, there was very little difference between the two
at lower values, with linear search even having a lower time at points. However, as m grows arbitrarily
large, the two begin to deviate, with binary having the generally smaller values.

The current data does not show them deviating particularly far, but the gap would likely increase as m
grew. The current emperical data does indeed match up with expected theoretical. Unfortuantely, due to
time limitations, data could not be gathered for even larger values of m.

Sidenote: It can be stated that, from the current data, the linear search does not look 100% linear. At
least from the current data, it looks to be more of a curve that slowly grows with larger m values.

First off, this perception may be entirely due to the given dataset. A normal line graph likely should
have values that change in consistent increments. However, the given values are more multiplicative.
This results in the data to the right being skewed as it “jumps” to far greater values across the x-axis.
Adjusting the input values would likely account for this and give a more “standard” linear graph.

Should the linear search still look skewed even after this, then it’s possible that the “modified” part of
the linear search is also significantly increasing the time spent. For, as it replaces more and more
values, it will have to travel further and further to get a non-repeating value. The worst case will stay
the same in these instances, but the best case will, by necessity, be closer and closer to the full array. By
extension, this means that the average will also skew significantly which in turn, will increase the total
time.

This may be trivial in smaller datasets but may have a large impact of exceedingly large ones.

This likely would not affect binary as much because, once binary has a match, any further values will
be nearby, due to sorting.

Analysis of Other Values

An interesting note is that, based on current data, the average, shortest, and longest times seem to
directly correlate to the size of the array to search through. Once the array size stopped growing, they
all appear to have plateaued and returned consistent, mostly-static values.

The only value at this point that changed to any significant degree was binary search on “longest time”,
which was due to a single data point and could be attributed to random error, such as computer freezing
up, a very abnormal dataset that was literally worst-case scenario, or some other unlikely (but potential)
outside factor.

It’s difficult to judge without more data. As stated above, both more linear of input values for the x-axis
(as opposed to them generally being doubled), as well as simply more tests with larger n and m values,
would significantly help determine how well the emperical data matches the theoretical.

However, given the current data set and the expected behavior, I am going to tentatively declare that it
does indeed line up. Linear search is equal or better, at lower values. And as the values increase, linear
begins to fall off until there is a stark difference and binary becomes the clear winner.

